
Universal System for Creation and Installation Linux Packages

Chernov Evgeny
Institute for System Programming of RAS

Moscow, Russia
e-mail: ches@ispras.ru

Abstract—This paper discuss about the problem with
distribution of software for Linux operation system. The
problem is that Linux systems are different: different package
formats, different names of packages for one program. It leads
to creation of several packages for every Linux system for only
one program you want to distribute. For resolving the problem
mathematical model was developed. Based on the model
database with information about dependences and packages of
some Linux systems and web service for searching equivalent
dependences are developed. Besides, some special tools that can
help developers and users to work with different distribution
and alien packages are developed.

Keywords - Software packages; Software portability;
Operating systems

Source
 code Binary file

Developer
Internet

Compile

ОS Linux

I. INTRODUCTION
There are several ways for distribution programs from

developer (where it’s presented as source code) to users
(who use it in compiled form). The first one is a distribution
in source code form (Fig. 1).

Figure 1. Distribution in source code form.

In this case user should compile and install program. But
not all users are able to do it. So this way is more convenient
for advanced users who know what compilation means and
can fix some problems than can appear during compilation.

The second way is a distribution through repositories of
Linux systems (Fig. 2).

In this case Linux developers compile the program by

yourself in their system and build a package – a special
format file that contains archived program and meta-data for
it (name, version, architecture, description, checksum and
dependency list). Such packages are placed into repositories
that are different for every Linux system. Users can install
these packages on their systems via special tools from
corresponding Linux system. However not all program

developers can use this way because Linux developers can’t
serve all programs.

The third way is a distribution by developers (Fig. 3).

In this case developer build program and create package

by himself. However meta-data of package depends on
distribution on which it’s targeted to install. Names of
dependencies are different on different Linux distributions.
So developers have to create several packages for every
Linux system. This makes it difficult to distribute programs
by developers and to find proper packages for users.

So in common developers have to distribute programs by
themselves. In this case they are called Independent
Software Vendor (ISV). The way is hard because of package
incompatibility of Linux system. Different package format
can be used in different Linux system and the name of
packages of one program can differ. And it leads to the
different dependency names.

This paper deals with the system which can determine
corresponding names of dependency on different Linux
systems automatically and about tools that using the system
and help developers to create packages for different
distributions and users to install alien packages (created for
other distributions). The system is developed as web service.
The tools can connect to the service and receive the names of
dependencies for particular Linux system.

II. WEB SERVICE AND ALGORYTHM OF DEPENDENCEC
SEARCHING

The web service for definition of equivalent dependences
on different Linux distributions contains two interfaces:

1) For determination of the status of dependence on the
particular Linux. It takes the name of dependency
and returns one of the following values:
• OK – the dependence exists on the distribution

(there is a package that provides such entity).
• NO – the dependence is not present on the

distribution (no package provides it).
• FILE – the dependence is presented in the

distribution as a file.
• MULTIPLE – the dependence is provided by

several packages on the distribution.

2) For determination of names of dependences on some
distribution. This interface takes list of dependences
on any distribution and the information about the
distribution (the name, the version, architecture) and
returns the list of equivalent dependences on other
distributions.

Based on this service the web interface has been
developed. It can help user to know the names of some
dependences on all supported distributions. Program
interface of web service can be used by some systems like
system for automatic package building (openSUSE Build
Service) and by tools for converting package format – alien.

The web service works on the basis of a database. The
main tables in this base are tables of distributions, packages,
files and elements of dependences. Besides, there are some
tables for links: the first defines, what files are provided by
each package, the next two define what elements of
dependences packages require and provide. Besides, there is
a table for storage of results - equivalent sets of dependency
names for different distributions. In case of repeated search
of equivalent dependences results takes from this table and
new search is not made.

The mathematical model lies in the basis of database
structure and algorithm of search of equivalent sets. It
operates with the following sets: set of distributions,
packages, files and elements of dependences. Links between
them (mapping from one set to another) and their properties
are defined. Besides, the task of search of equivalent set is
formally given.

Informally the task can be formulated by the following
ways:

Having set of dependency names from one distribution P
and information about the distribution D, determine the set
of equivalent dependences on other distributions which
satisfy to following conditions:

1) The Condition of existence of the decision: if any
distribution does not provide files, which P requires
(i.e. the set of files of all packages of this distribution
does not include set of files of packages, which
package P requires), then the decision for this
distribution doesn’t exist (i.e. there is no equivalent
set for this distribution). Otherwise it should satisfy
to following conditions:

2) The Condition of sufficiency of the decision: the
received set for any distribution should include all
packages which initial package P on this distribution
requires.

3) The Condition of necessity of the decision: the
received set should not contain superfluous
elements, i.e. at an exception of any element of it the
sufficiency condition should be violated.

The algorithm of the decision of this task is based on the
following assumptions:

1) If any application depends on a certain package on
the distribution then this application depends on the
files provided by the given package on this
distribution.

2) Names of files of the same program on different
distributions are identical (thus a path can vary).

Thus, having the information on packages and files
which the packages provide, it is possible to find what files
the initial package requires on one distribution. Then to find
these files on other distribution and to find what packages
provide them. Thus we have the list of dependences for other
distribution.

The described way of search allows finding the decision,
satisfying to a sufficiency condition, but thus it can not
satisfy to a necessity condition. Really, many "superfluous"
elements can appear in search result. For example, in case of
a file on some distribution is provided by several packages
all of them will be presented in the result set, however
presence only one of them is necessary. Therefore in the
course of search it is necessary to delete such "duplicating"
packages. Formally, it is possible to leave any of these
packages since in any case necessity and sufficiency
conditions will be satisfied. However for the best visual
representation of the result set some heuristics are used for
removing such duplicating packages: to remove the package
that provides smaller number of files or not to remove
package which name coincides with the name of one of
dependences on the initial distribution.

There is one more reason of growth of number of
dependences in the result set. The matter is that packages on
which depends initial one provides set of files which aren’t
program and libraries. It can include documentation files,
video, the pictures, etc. Such files on other distribution can
be provided by set of packages (for example, a file
“readme”), however in reality the initial package doesn’t
require it. So the packages found this way will be
superfluous in the result set. To avoid such case it’s
necessary to specify the first assumption:

If any application depends on a certain package on the
distribution then this application depends on some files
provided by the given package on this distribution.

Determination of this set of "some" files occurs on the
basis of classification of all files on the distribution. There
are 7 classes of files: programs, libraries, modules, links, the
empty files (gags), not existing in a package files (they can
be created after package installation) and others. Each class
has some more subclasses (for example, “the program on
Perl” or "module Python"). Text files, archives, video are
placed in "others" class and in a corresponding subclass (“a
text file”, "archive", "media").

For each class with a subclass some priority is attributed.
For example, "programs" have the highest priority – 1, “text
files” – the lowest – 7, “links to modules” – 4 priority. By
means of these priorities, in each package it is possible to
allocate the main files – files with the highest priority. Thus,
search of packages on other distributions can be made on the
basis of search not everything, but only main files of the
package. For example, if the initial package requires on a
package that provides 1 program, 5 pictures and 10 text files,
then search only one program will be made on other
distribution.

The result of work of the web service, in which the
described algorithm is implemented, is presented in table 1.
The first line contains names of distributions. Further there

are lists of equivalent dependences. The bold type in each
line specifies dependence for which search was made.
OpenSUSE

11.1 Fedora 11 Debian 5 Mandriva
2009

kdebase-runtime kdebase-runtime kdebase4-runtime

kdebase-bin-kde3 kdebase4-
runtime kdebase-runtime-

libs kdebase-runtime-
data

libkaudiodevicelis
t4

libqt4-x11 qt-x11 libqtgui4 qtguilib

perl perl(Test::More) perl-modules perl

xorg-x11-
libXext libXext libxext6 libxext

Table 1. Equivalent dependences search result
As it’s apparent from the table, for one dependence on

one distribution can exist a little ones on others. Besides,
names of dependences can essentially differ.

The described functionality of the web service can be
used by some special tools that simplify creation and
installing packages for different Linux distributions. There
are 4 different tools: for creating and installing universal
packages, for installing alien (created for other distribution)
packages and for converting packages from one distribution
to the package for other distribution.

III. TOOLS FOR MANAGEMENT OF UNIVERSAL PACKAGES
The universal package – is a package of a standard

format (rpm [1] or deb), storing in itself lists of dependences
for all distribution kits. Thus, in the course of installation for
any distribution it will be possible to check up, whether
dependences of the given package on concrete system are
resolved.

Author has developed a tool called ‘UPackageBuild‘.
The tool works on a basis of the web service and is used for
creation of universal packages. This tool takes a package of a
standard format (rpm or deb) and Linux distribution name on
which it has been created. The list of dependences is taken
from the package and is sent to the web service. The web
service returns the lists of equivalent dependences for other
distributions. The received information is placed in a file
“/etc/upackage/package_name.requires” which is added to
file-list of an initial package. Initial dependences at a
package are cleaned, and to the version the prefix
“Universal” is added.

The universal package received by this way is a usual
rpm - or deb - package which does not have dependences,
but have “/etc/upackage/package_name.requires” file that
contains the description of dependences for each
distributions. The given package has not own format. That
makes it possible to install it by standard utilities (rpm – for
rpm-packages and dpkg – for deb-packages). However in
this case there is no check of dependences and that can lead
to incorrect operation of the program or it can not work at
all.

For correct installation of universal packages it is
necessary to take advantage of the other special tool –

‘Upackage’. The given tool takes from the installing package
the file with dependences, finds in it the list of dependences
for the concrete distribution and checks, whether the given
dependences on the concrete distribution are resolved or not.
In success the package is installed, otherwise the list of
packages which are necessary for install before installation
of the given package is displayed.

In case of package installation by standard tools, it is
checked, if ‘Upackage’ is installed on the system, then
installation interrupts with the requirement to make
installation by the given tool. If such tool is not installed, the
message is displayed that the given package is intended for
installation by Upackage tool, where it is possible to
download it and the prevention that in case of package
installation by standard tools, the user is responsible that all
necessary dependences are installed on the system.

IV. CONCLUSION
The given paper describes the system for determination

of equivalent dependences of packages from different Linux
distribution and some special tools that using this system
help developers to create packages for different distributions
and help users to install alien packages on their system. The
offered decision is based on mathematical model where the
formal task is set. Then the database of dependences of
distributions is developed according to this model. Using the
database the web service provides interfaces for the analysis
and search of dependences on different Linux distributions.
On a basis of web service the author had developed tools for
creation and installation of universal packages which can be
installed on different Linux distributions.

V. REFERENCES

[1] Eric Foster-Johnson. RPM Guide. — Indianapolis, Indiana:
Wiley Publishing., Inc. 2003 — C. 3-6

	I. Introduction
	II. Web Service and Algorythm of Dependencec Searching
	III. Tools for Management of Universal Packages
	IV. Conclusion
	V. References

