
Service-oriented approach to integration testing in distributed
systems

V.N.Fedotov

Software Engineering Department
Institute for System Programming

vnfedotov@acm.org

Abstract
Development of the service-oriented technologies

has turned the market of integration platforms, be-
coming new challenge for IT experts worldwide. Key
principles of SOA paradigm do not allow to apply the
solutions tested on the client-server architecture. On
the other hand, SOA offers its own set of tools to cope
with majority of problems. In this paper it is shown
how to effectively troubleshoot the distributed system
by means of service-oriented approach.

1 Introduction
With development of communication technologies,

business process automation becomes increasingly ur-
gent task both for business, and for the state. Seen
not so long ago just as a tool to reduce costs, now BPA
is a key to survival in a changed world where internet
and mobile services rule.

Majority of companies already has ERPs, CRMs,
HRMs and many other applications managing their
daily business. But do these applications automate
company business processes? They are certainly pro-
viding some automation but it has nothing to do with
business process, as they cannot interact with each
other. So, BPA is only possible when there is a way to
’glue’ applications together. In literature such way of-
ten called ’enterprise application integration’ (EAI[1]).

There isn’t a ’right’ solution for application integra-
tion. As different integration concepts were developed,
they didn’t replace each other, instead they’re compet-
ing until now. You still can find message-oriented mid-
dleware from early 90-s, integration brokers, and even
CORBA, which is almost dead, because it didn’t sur-
vive the competition with the newest trend - service-
oriented architecture (SOA[2]).

While using many ideas from CORBA, SOA has
taken completely different technological approach by
using XML and J2EE to simplify development of inte-
gration components dramatically. In SOA these com-

ponents are called ’services’, as they mostly resem-
ble web-services, but are arranged in a way defined
by SOA guiding principles. These principles actually
form SOA paradigm, as they distinct service-oriented
architecture from bunch of web-services, just like OOP
principles distinct object-oriented code from just some
C++ code.

2 Enterprise as a Black Box

When thinking about how to make two applications
interact with each other, you probably will come out
with something like client-server approach, which is
typical for Internet and various network applications.

Unfortunately, client-server architecture doesn’t
work in EAI as there is a tens of applications intercon-
nected with each other in different ways by different
protocols. In that case client-server approach requires
each application to contain an adapter for every other
application, causing serious flexibility and scalability
issues.

These issues are the reason of using middleware so-
lutions. Middleware platform are in the middle, ob-
viously, of every interaction, mediating and routing
messages between applications. For testing it means
that instead of one interaction, you need to test two
interactions, which isn’t too bad. But SOA make mat-
ters worse, as it compose middleware platform from
dozens of interconnected services. Now you need to
test twenty or thirty interactions. As SOA solution
becoming mature, its becoming more complex, with
composition services and orchestrations, so testing ef-
forts are only increasing.

Common solution to lower the efforts putted in in-
tegration testing is simple - don’t do integration test-
ing. Without advanced testing approach, this is the
only way to cope with tight release schedule typical
for SOA projects.



3 Test stubs as a solution
Of course there are better solutions. How to test

integration in a distributed system - isn’t a most recent
question. It is also having a simple answer: instrument
SUT in a such way so that interactions between its
components became transparent. But there is actually
quite a broad choice of technical approaches.

Logging is a most simple approach. Analysis of
transactions journal provide all the necessary infor-
mation about way that components interact. However
logs can be pretty hard to reach, too big to read and
it’s impossible to analyze them automatically.

Testing tools traditionally offer a different solution
- test stubs. Stubs form a virtual environment, sur-
rounding each component and giving a possibility to
inspect all external links of a component under test.
However, stubs are way too invasive, as they are lit-
erally muffling external links, thus it is impossible to
test entire business process. Also, test stubs are inac-
cessible from the test scripts, so all assertions must be
contained within the test stubs themselves, thus test
logic became sprayed over test environment. Because
of that it is nearly impossible to support regression
test sets in a virtual environment.

Various academical papers[3][4] propose instru-
menting SUT by way of instrumenting its components
to provide more information about interactions with
other components and make that information accessi-
ble from test scripts. Unfortunately, such instrumen-
tation requires a complete revamp of release process
adopted by enterprise, thus making that approach in-
appropriate for most companies.

4 Alternative
As an alternative to the solutions described above

we propose a new way to test application integration
in a distributed system. Our solution offer similar
approach, but entirely different technical implemen-
tation. In short it can be summarized as ’connect
everything to ESB[5]’.

We propose to use ESB as a universal proxy for
every interaction in a SUT, thus providing us with ca-
pability to monitor and control these interactions. Us-
ing of ESB also grants access for testing tools through
JMX and event queues, which provide us a way to
automate analysis of interactions inside the SUT and
even modify messages on the fly to reach broader test
coverage.

These are the key advantages of proposed solution:

• ESB provides transparency for all interactions be-
tween SUT components;

• test assertions are located in one place;

• tests can be easily automated;

• the minimum quantity of tests covers a maximum
quantity of SUT components;

• thanks to a uniform configuration provided by
ESB, the test environment becomes more flexible
and controlled;

• testing process is focused on business process, so
there is a minimum risks of occurrence of late
integration defects.

5 Conclusion
In this paper we’ve shown a way to use service-

oriented technologies for creation of flexible test en-
vironment, which allows to simplify integration test-
ing of distributed systems by adding necessary trans-
parency to interactions between components of SUT.

On the basis of the proposed approach it is planned
to create the completed methodology of testing dis-
tributed systems based on service-oriented architec-
ture, having presented original techniques of construc-
tion of test scenarios and carrying out a performance
testing.

References
[1] Gregor Hohpe, Bobby Woolf. Enterprise Integra-

tion Patterns.

[2] OASIS Reference Model for Service Oriented Ar-
chitecture 1.0
http://docs.oasis-open.org/soa-rm/v1.0/soa-
rm.pdf

[3] Cesare Bartolini, Antonia Bertolino, Sebastian El-
baum, Eda Marchetti. Whitening SOA testing.

[4] Youngkon Lee. Double layered SOA test architec-
ture based on BPA - simulation event.

[5] David Chappell. Enterprise Service Bus.


