
Testing AJAX functionality with UniTESK

Yevgeny Gerlits

Lomonosov Moscow State University

Moscow, Russian Federation

Email: gerlits@ispras.ru

Abstract1—AJAX (Asynchronous JavaScript and XML) is a

very promising technology for building interactive web

applications. At the same time, AJAX significantly complicates

the development of the client side of web applications. The

paper demonstrates the possibility of utilizing the UniTESK

test development technology for testing the client side

functionality of AJAX web applications. Using UniTESK, test

systems are developed for 8 AJAX web applications. Then the

fault revealing capability of the test systems is evaluated in

experiments.

Keywords-AJAX; model based testing; UniTESK,

asynchronous interface

I. INTRODUCTION

A classic web application is built around the notion of
web pages and generally consists of a set of static web pages
or server side programs that generate web pages. Such a web
application is sufficiently inferior in interactivity to a web
application developed with AJAX. The main reason is that
the user communicates with the classic web application
synchronously, that is he supplies input to the browser, e.g.
clicks on a submit button or a link, and then waits until the
browser refreshes the page. As opposed to this, web
applications developed with AJAX can retrieve data from the
server asynchronously in the background without interfering
with the display and behavior of the existing page.

At the same time, improving interactivity with AJAX
sufficiently increases the complexity of the client side
development. Using the JavaScript programming language,
an AJAX application developer should implement an
intermediate level between the browser and web-server
which is responsible for handling user actions, managing
browser-server dialog, and changing the interface according
to web server responses. This task is hard enough to make a
couple of faults.

In this paper, we consider the problem of testing the
client side functionality of AJAX web applications. We show
that qualitative tests can be elaborated using UniTESK [1, 2],
an industrial model based test development technology
designed in Institute for System Programming of Russian
Academy of Sciences.

UniTESK was initially applicable to only systems with
synchronous interfaces. After a period of time, an approach
[3, 4, 5, and 6] was designed and implemented that extends
this technology to asynchronous interfaces. Since then

This work was supported by the RFBR (grant 09-01-00576-a)

UniTESK has given a good account of oneself in testing
several classes of complex applications with asynchronous
interfaces such as internet protocols, components of a
distributed operating system, and functions of the standard
binary interface of Linux. Actually, these successful
applications of UniTESK suggested that we apply this
technology to AJAX web applications.

UniTESK offers a test suite architecture consisting of a
set of components that are used as building blocks to
organize test systems. In the paper, we present a technique
for developing these components so that the test system they
form aims at revealing faults in the client side of the AJAX
web application under test. We do not consider the problem
of testing the server side of AJAX applications in this paper.

After presenting the approach to testing systems with
asynchronous interfaces proposed by UniTESK and our
technique of its use, we conduct several experiments in
which we practically apply them. The obtained results show
the applicability of UniTESK and the technique for testing
the client side functionality of AJAX web applications. At
the end of the paper, we present a comparison between our
approach and the existing approaches to highlight the key
advantages of UniTESK and our technique. We also discuss
the main limitations and drawbacks of our approach.

The paper is structured as follows. Section II is devoted
to the AJAX technology. We consider the architecture, the
behavioral model, and the main features of a typical AJAX
application. Section III outlines the UniTESK approach to
testing systems with asynchronous interfaces. In section IV,
we present our technique for testing the client side of AJAX
web applications with UniTESK. We empirically evaluate
the applicability of UniTESK and the technique in section V.
Section VI compares our approach with the existing
techniques. We conclude with a summary of our key
contributions, and suggestions for future work in section VII.

II. AJAX

AJAX is an approach to web interaction that combines a
set of well known technologies to achieve high interactivity
of web applications. In this section, we consider the
architecture, the behavior and the main features of a typical
AJAX application.

Let us discuss AJAX applications comparing them with
web applications that we call “classic”. The architectures of
both the classic and AJAX applications are shown in Fig. 1.

A classic web application consists of a set of web pages.
Some web pages may be described in static HTML

(Hypertext Markup Language) files; the others may be
generated by the server side programs. A web page is
displayed to the user, containing lists of links and form
elements that allow the user to drill down to further web
pages.

Figure 1. The architectures of classic and AJAX web applications

The main functionality of a classic web application is

implemented at the server side. Some animation and
additional functionality can be provided using client side
programming languages and technologies, but it doesn’t
change the main behavioral model of the application. This
model works as follows: the user supplies input to the
browser, e.g. types a URL (Uniform Resource Locator),
clicks on a hyperlink, or submits a form; the browser sends
the HTTP (Hypertext Transfer Protocol) request for the URL
to the web server; the web server responses with a new web
page; the browser renders the page and waits for the user’s
next input.

The key features of classic web applications are as
follows:

1. The user interacts with the web application
synchronously, i.e. he requests for the next web page
only after the response to the previous request has
been handled by the browser and the appropriate
web page has been displayed.

2. HTTP requests are issued for entire web pages and
the entire page gets refreshed as a result of this
action.

3. HTTP requests are issued by the browser, and HTTP
responses are handled by the browser.

4. HTTP requests occur as a direct consequence of user
actions.

As contrasted with a classic web application, the user
communicates with an AJAX application asynchronously.
The behavioral model proposed by AJAX works as follows:

1. The user performs an action on the web interface,
e.g. clicks on a hyperlink, or a button.

2. An appropriate user interface event is fired.
3. The handler of this event, a JavaScript function, is

called. It builds an asynchronous HTTP request, sets
a callback function that will handle the response, and
issues the request to the web server.

4. The web server replies with the data.

5. The callback function is called, it reads the data and
changes the client side state that includes the DOM
(Document Object Model) state, cookies, and global
JavaScript variables.

According to this model, the user is able to go on
working with the AJAX web application right after the user
interface event handler has been executed, i.e. the user does
not has to wait until the client-server dialog has been
completed as it is happens in case of a classic web
application. Because of the small size of the transferred data,
the browser responds very quickly and the user does not feel
any delay.

The key features of AJAX web applications are as
follows:

1. The user interacts with the AJAX application
asynchronously, i.e. he goes on working with the
application while asynchronous HTTP requests are
issued and responses are handled in the background.

2. The web server does not response with the entire
web page, it responses with data that the client side
JavaScript uses to dynamically refresh a small part
of the currently displayed page.

3. HTTP requests are formed, issued and handled by
JavaScript functions.

4. User actions can trigger the execution of JavaScript
functions that may change the client side state and
perform communication between the client and
server, but JavaScript functionality is also able to
work independently from user actions. It is usually
achieved with special JavaScript functions that use
timers to call other JavaScript functions.

5. The JavaScript programming language doesn’t
support multithreading. The browser uses one thread
to handle user actions and execute JavaScript
functions, including user interface event handlers
and callback functions.

6. Concurrent HTTP requests are possible in some
AJAX web applications, i.e. the next HTTP request
may be issued before the response to the previous
one has been handled.

In the paper, we consider AJAX applications, the client-
server dialog of which complies with the behavioral model
presented in this section. It doesn’t matter which mechanism
an AJAX application uses to perform asynchronous client-
server communication. Let us note that the use of the
XMLHttpRequest [7] object implies a sequence of HTTP
responses to a single HTTP request. We take this fact into
account.

We also suppose that an AJAX application itself is able
to perform client-server communication independently from
user actions.

III. TESTING ASYNCHRONOUS INTERFACES WITH

UNITESK

UniTESK is a model based test automation technology. It
can be used for testing systems with synchronous and
asynchronous interfaces. A synchronous interface implies
that the subsequent action on the interface may be performed
only after the interface has already responded to the previous

AJAX Classic

Client side (browser) Client side (browser)

Server side Server side

 HTTP response
 (HTML, CSS…)

User interface
event

User interface

Web server

Back end

User interface

AJAX engine

Web server

Back end

HTTP
request

 Asynchronous
 HTTP request

HTTP response
(XML, JSON…)

 DOM change

action. The interface of a software system is considered to be
asynchronous if this system can simultaneously interact with
several other systems or interactions may be initiated by the
system itself. The approaches and test suite architectures for
testing systems with synchronous and asynchronous
interfaces differ. We will discuss UniTESK implying only
the asynchronous case in the remainder of the paper.

Figure 2. The UniTESK test suite architecture for testing systems with

asynchronous interfaces

Each test system developed with UniTESK consists of a

set of components. UniTESK defines the number of the
components, their responsibilities and relationships. Fig. 2
contains the test suite architecture proposed by UniTESK for
testing systems with asynchronous interfaces. Some of the
components are already implemented and are used as is
independently from the type of the application under test.
Their representations have the gray background in the figure
2. The other components should be implemented by the
tester and their implementations vary depending from the
application under test. UniTESK provides formal
descriptions to describe these components, extensions of
some of the industrial programming languages to develop
them, and software instruments to translate formalisms into
the code in the target industrial programming language. The
following formal descriptions are provided: specifications,
mediators, and scenarios.

The test system developed with UniTESK supposes that
the interface of the application under test consists of atomic
operations of two types: stimuli and reactions. The test
system supplies input to the application by means of
applying stimuli to it. The application outputs through
reactions that the test system evaluates. Reactions can be of
two types: immediate or deferred. Immediate reaction is a
reaction that is visible from outside immediately after
affecting target system. When testing an application with an
asynchronous interface, reactions to some stimuli may not be
observed immediately because of the internal processes in
the application. Deferred reaction is a reaction that is visible
from outside later some time after a set of affecting target
system.

 Stimuli and reactions are the notions of UniTESK. The
tester has to represent the real application interface through
stimuli and reactions, and provide UniTESK with this
interface. The following question could be set. Is it always
possible to represent an arbitrary asynchronous interface

through atomic stimuli and reactions? We haven’t heard of a
formal proof of it, but we also haven’t heard of a contrary
instance refuting it.

A formal interface of the application under test consisting
of stimuli and reactions is fixed in specifications.
Requirements to the application behavior are also fixed in
specifications in the form of pre-conditions and post-
conditions of stimuli and reactions, and invariants of data
types. Specification also contains data structures that model
the state of the application under test, i.e. describe the model
state. The model state reflects the state of the application
under test during testing. The requirements in specifications
are imposed on the model state changes. The pre-condition
for the stimulus describes constraints on the state, in which
the test system is able to apply the stimulus. Violation of the
precondition for the stimulus represents that the test is made
incorrectly. The immediate reaction does not have its
precondition. The post-condition for the stimulus and post-
condition for the immediate reaction are the same things. The
post-condition for the stimulus defines the requirements to
the result of its application, i.e. to the state change and
possibly the return value of the application operation the
stimulus refers to, e.g. when applying the stimulus leads to
the call of a public application operation that returns a value.
The pre-condition for the deferred reaction describes if
appearance of the reaction in the given state is possible.
When precondition for the deferred reaction is violated,
incompliance between the behavior of the application and its
specification is registered. The post-condition for the
deferred reaction checks compliance of the result obtained
when the reaction emerges, to the expected one.

UniTESK defines the structure of specifications. The
main goal of this structure is to provide the test completeness
metric.

Specifications are translated into the test suite
architecture components that take part in the verification of
stimuli and reactions: model state, action oracles and state
mediators.

To be able to verify requirements to stimuli and
reactions, the test system should somehow link specifications
to the application under test. Action Mediator component is
generated from the formal description called mediator. It
performs actions on the application under test, i.e. really
applies stimuli. It also registers immediate reactions. The
other component, implemented in the target programming
language, registers the appearance of the deferred reactions.
It is called catcher. The component that keeps information
about the order of stimuli and reactions is called interaction
register. The exact order of stimuli and reactions can not
always be observed when testing a system with an
asynchronous interface; therefore the UniTESK approach to
testing systems with asynchronous interfaces was designed
to be able to take advantage of the observable partial order of
stimuli and reactions. So, interaction register usually keeps
information about the detected partial order of stimuli and
reactions.

The component of the UniTESK test suite architecture,
which is called test scenario, is generated from the formal
description of the same name and is used to combine

Model state

Hyper oracle State mediator

Test

scenario

Interaction register

Action mediator Application under test

Catcher

Oracle

operations that test logically related aspects of the
application functionality. These operations are called
scenario functions. Each scenario function applies a set of
logically related stimuli to the application under test,
supplying values for their parameters. To apply a single
stimulus, the scenario function passes its call to test oracle,
test oracle passes the stimulus to action mediator, and action
mediator finally applies the stimulus.

Stimuli are applied and reactions appear during the
execution of the scenario function. The completion of the
scenario function indicates that all the stimuli have already
been applied and all the reactions have been cached. After
the scenario function has been executed, hyper oracle begins
evaluating the observable behavior of the application under
test. Information about the detected order of stimuli and
reactions is utilized during the evaluation process as follows.
The test system goes over all the possible orders of stimuli
and reactions that conform to the partial order detected. For
each particular order, each stimulus, and reaction test oracle
checks the pre-condition, state mediator synchronizes the
model state with the state of the application under test, and
again test oracle checks the post-condition. If this procedure
discovers at least one order, for which all the constraints on
stimuli and reactions are met, the test system claims that the
behavior of the application under test is acceptable.

To completely automate the execution of UniTESK tests
and automatically generate sequences of test inputs, the
developer has to define test scenario automata. A special
component of the UniTESK test suite architecture goes over
all the states of test scenario automata and calls each scenario
function in each accessible state. To define test scenario
automata, a function should be implemented that returns the
state of test scenario automata after each scenario function
call. In theory, the state of test scenario automata is
constructed on the base of the model state. In practice, it may
be an arbitrary function. This function allows the test system
to construct test scenario automata incrementally during
testing.

UniTESK imposes the following restriction on the
behavior of the application under test: after applying a set of
stimuli to the application, it demonstrates a set of reactions
during a finite period of time and goes to a state in which no
reactions appear spontaneously. Such states are called
stationary. Stationary states allow the test system to perform
the evaluation process and call the next scenario function at
the state in which the previous scenario function finished.

In this section, we have only outlined the main
characteristics of the approach we use for testing the client
side of AJAX web applications. The details can be found in
[3, 4, 5, and 6].

IV. TESTING AJAX APPLICATIONS WITH UNITESK

In this section, we present a technique for developing the
UniTESK test suite architecture components so that the test
system they form aims at revealing faults in the client side
functionality of AJAX web applications.

A. The technique

In practice, functional testing of web applications aims at
discovering faults of two types: general faults such as dead
links and incorrect markup, and business logic faults
concerning the behavior of the web application under test.
Business logic faults are discovered when the web
application under test incorrectly reacts to a logically related
set of stimuli. The technique we propose in this section aims
at discovering faults concerning the behavior of the client
side functionality of AJAX applications.

At the first step, the requirements to the behavior of the
client side of the AJAX application under test are extracted.
When testing a web application, it is natural that there aren’t
any well-structured documents describing functional
requirements. The probability of getting the requirements to
the client side of the AJAX application is even lesser. We do
not propose a method for the extraction of the requirements
in the paper, because elaboration of such a method requires
additional investigations and a separate paper is better to be
written on the matter. We only assume here that the result of
the requirements extraction procedure is a set of well-
structured documents describing the requirements to the
client side of the AJAX application under test.

At the second step, the extracted requirements are to be
formally fixed in specifications in the form of pre-conditions
and post-conditions of stimuli and reactions, and invariants
of data types. To be able to formalize the requirements using
the software contracts proposed by UniTESK, the tester must
represent possible interactions of the client side functionality
with its environment as a set of stimuli and reactions.

We believe that an adequate model is shown in Fig. 3.
This model conforms to the behavioral model of a typical
AJAX web application presented in section II, but it only
concerns the client side of the application. An individual
action on the application interface represents a stimulus if
this action leads to the modification of the client side state or
if an asynchronous HTTP request is issued. A user interface
event occurs as a result of such an action. The handler of this
event is called. It may change the client side state or issue an
asynchronous HTTP request. The result of its execution is
modeled as a reaction. The new proxy server component of
the test system intercepts the request issued by the user
interface event handler. It in turn issues the HTTP response.
It is modeled as a stimulus. The callback function is called
that handles this response. The client side state can be
modified as a result of its execution or something else can
happen. It is modeled as a reaction.

The client side functionality of the AJAX web
application under test may change the client side state or
issue an asynchronous HTTP request independently. Such
an activity is modeled as a rection.

Having this model, the requirements to the stimuli and
reactions can be formalised. Stimuli are specified trivially.
A reaction results to the client side state change and
possibly an asynchronous HTTP request. So, the
postcondition for the reaction should asses the client side
state change and the HTTP request in case the request is
issued as a result of the reaction.

Figure 3. Interactions of the client side of an AJAX web application

with its environment

In order that the test system may really verify the

behavior of the AJAX application, action mediator, catcher
and proxy server test suite architecture components are
implemented at the third step.

Action mediator contains functions that
programmatically perform actions on the application
interface.

Catcher must detect the reactions, and extract and save
the client side state changes after them. The single threaded
nature of JavaScript helps a lot for the extraction of the
client side state changes. If the extraction of the client side
state change is accomplished by a JavaScript function, it is
guarantied that there aren’t another activity that modifies the
client side state at the same time.

Proxy server is not a part of the UniTESK test suite
architecture. It is a new component specifically desigent to
support testing of AJAX applications. Proxy server has two
responsibilities:

• intercept asynchronous HTTP requests;

• apply stimuli that model the responses of the target
web server.

The use of proxy server allows modeling the real
situation of multiple users working with a single web server.
The server side state can be changed by the users. Proxy
server is able to respond taking the possibility of the server
side state changes into account.

The client side state changes and the intercepted HTTP
requests are used by the state mediator to synchronize the
state of the requirements model with the state of the AJAX
application under test during the verification procedure.

At the fourth step, specifications are used to determine
the test coverage criteria. The higher is the criteria, the more
complecate are test scenarios.

At the fifth step, test scenatios are developed so that the
choosen test coverage criteria could be achieved during
testing.

Testers often do not take faults concerning multiple
asynchronous HTTP requests into account, because of their
low probability. A typical example of such a fault can be
the following: the second asynchronous HTTP request is
issued before the response to the previous one has come;

due to network delay, the response to the second request
comes before the response to the first one; the callback
function that handles the second response removes a DOM
element; the response to the first request comes; its callback
function crashes trying to access the deleted DOM element.
It is obvious, that the proposed technique for modeling
stimuli and reactions alows developing scenatio functions
aiming at testing multiple asynchronous HTTP requests.

B. Application domain

The approach to testing systems with asynchronous
interfaces proposed by UniTESK has two main application
conditions:

1. A formal interface consisting of atomic stimuli and
reactions may be provided for the real interface of
the application under test. This formal interface
should adequately model the real application
interface.

2. After responding to a set of stimuli, the application
under test must go to a stationary state in which no
reactions can appear spontaneously.

The technique we have just presented explains how to
get a formal interface complying with the first condition.

As concerns to the second condition, we have mentioned
in section II of the paper that AJAX web applications may
have client side functionality that changes the client side
state and communicates with the server independently from
user actions and at an unpredictable time. Formally, there are
no stationary states in such applications. If such functionality
is out of the scope of testing, it usually may be ignored or
deactivated by hand. If the test system must take such
functionality into account, it has to model stationary states.
For instance, the test system may artificially execute a piece
of JavaScript during the evaluation process in order that the
application under test does not change the client side state or
issue an HTTP request.

At the moment, we can not imagine a client side
functionality of an AJAX web application that can not be
modeled and tested using UniTESK and our technique.

V. EMPIRICAL EVALUATION

In order to evaluate the applicability of the UniTESK test
development technology and the technique of its use
presented in the paper for testing functionality of the client
side of AJAX web applications, we perform a set of
experiments.

We collect 8 AJAX design patterns. Each pattern
describes how the objects, components, and levels
constituting the AJAX web application should interact in
order that the application could respond to user actions in a
certain way or a certain interactivity effect could be
achieved. The patterns primarily describe client sides of
AJAX web applications. Implementing them allows us to get
AJAX applications that both implemented differently and
behave differently.

We implement each pattern in an AJAX web application.
So, we have 8 AJAX applications. After that, using the
UniTESK technology and our technique, we create a test
system for each AJAX web application developed. In order

Web server

User interface

AJAX engine

Catcher

Browser 1

Proxy server

User interface

AJAX engine

Browser N

Stimulus

Stimulus Reaction

Reaction

Action mediator

to assess the fault-revealing capability of the test systems we
intentionally introduce faults into the source code of the
AJAX web applications, perform testing and count the
percent of the faults revealed. This section presents the
results of our experiments.

A. AJAX design patterns

Here we briefly introduce 8 AJAX design patterns and
their implementations for which we develop test systems.
Detailed description of the patterns can be found in [8, 9, and
10].

Pattern: Explicit Submission. Problem: How can
information be submitted to the server? Solution: Instead of
automatically submitting upon each browser event, require
the user to explicitly request it, e.g. submit upon a button
click. AJAX application: A simple authorization form.

Pattern: Periodic Refresh. Problem: How can the
application keep users informed of changes occurring on the
server? Solution: The application periodically issues
asynchronous requests to gain new information, e.g. one
request every five seconds. AJAX application: An
application alerts the user as a new comment has been added.

Pattern: Submission Throttling. Problem: How can
information be submitted to the server? Solution: Instead of
submitting upon each JavaScript event, retain data in a
browser-based buffer and automatically upload it at fixed
intervals. AJAX application: An application that submits a
single field periodically as changes are made.

Pattern: Predictive Fetch. Problem: How can you make
the AJAX application respond quickly to user activity?
Solution: Have the application anticipate likely user actions
and call the server in preparation. AJAX application: An
application that preloads the next page of the article.

Pattern: Browser-side Cache. Problem: How can you
make the AJAX application respond quickly to user activity?
Solution: Retain server results in a browser-side cache.
Whenever the application performs an asynchronous request,
it first checks the cache. If the query is held as a key in the
cache, the corresponding value is used as the result, and there
is no need to access the server. AJAX application: A simple
calculator that performs calculations on the server and retains
the results in a client-side cache.

Pattern: Guesstimate. Problem: How can you cut down
on calls to the server? Solution: Instead of requesting
information from the server, use a historical data and make a
reasonable guess on the client. AJAX application: An
approximate calculation of the number of registered users.

Pattern: Pseudo-threading. Problem: AJAX web
applications are single-threaded. Some of them require
complex processing on the client. If the thread of execution
is busy performing such processing, users won't be able to
perform input. Solution: Instead of solving the entire
problem at once and returning, a processing function is
called once in a while, incrementally processes a bit more of
the problem, before yielding. AJAX application: Sorting of a
big table on the client.

Pattern: Multi-stage Download. Problem: How can you
optimize downloading performance? Solution: Break content
download into multiple stages, so that faster and more

important content will arrive first. AJAX application: An
application that downloads additional links after the main
content of the article has been downloaded.

B. Experiments

To implement test systems for the AJAX applications
introduced in the previous subsection, we exploit both the
Java and JavaScript programming languages. The JavaTESK
[11] toolkit is used to implement the UniTESK test suite
architecture components and run the test suites developed.
The Selenium Remote Control [12] testing tool is used to
drive the browser, programmatically perform actions on the
web interface, and access the resulting DOM states. We
exploit Mozilla Firefox as a browser in our experiments. Our
technique of the use of UniTESK introduces the proxy server
component in the test suite architecture. We implement this
component using the Java programming language. It is
universal, i.e. implemented once it is included in all the test
systems.

We perform five experiments for each AJAX web
application and corresponding test system. Thus forty
experiments are conducted in the total. Each experiment
consists in introducing a single fault into the source code of
the application, running the corresponding test system on the
application, and analyzing the test results. Table 1
summarizes the results of the experiments performed.

TABLE I. THE RESULTS OF THE EXPERIMENTS

AXAX application for Introduced Revealed %

Explicit Submission 5 5 100%

Periodic Refresh 5 4 80%

Submission Throttling 5 4 80%

Predictive Fetch 5 5 100%

Browser-side cache 5 5 100%

Guesstimate 5 3 60%

Pseudo-threading 5 4 80%

Multi-stage download 5 4 80%

TOTAL 40 34 85%

Here are some examples of the faults introduced:

building incorrect HTTP requests in JavaScript functions,
removing user interface event handlers, wrong modifications
of the DOM, removing an XMLHttpRequest object from the
pool of XMLHttpRequest objects, setting timers with wrong
time intervals, removing identifiers of HTML elements and
etc. All the faults appear at the client side of the AJAX
applications.

The test systems reveal 85% (in the mean) of all the
errors introduced. We believe it is a good result that confirms
the applicability of UniTESK and the technique of its use for
testing functionality of AJAX web applications. It is worth
noting that the percentage of the faults revealed depends on
the quality of the test systems developed.

VI. COMPARISON WITH THE EXISTING APPROACHES

We didn’t manage to discover another approach
specifically designed for testing the client side of AJAX
applications. In this section, we present an overview of the
existing AJAX functional testing approaches. The
approaches test an AJAX application as a whole; therefore

they are able to reveal faults in both the client side and server
side of AJAX applications. We compare them with the
approach we propose in the paper, i.e. the UniTESK
technology complemented with the technique of its use.

A. Approaches proposed by the scientific community

We succeed in discovering three approaches specifically
designed for functional testing of AJAX web applications:

• Invariant Based Testing [13];

• State Based Testing [14] ;

• Search Based Testing [15].
All the approaches use a FSM (Finite State Machine)

model of the AJAX web application under test to produce
tests; therefore we label them as FSM based test generation
approaches.

The Invariant Based Testing approach is rather directed
to revealing faults in dynamical DOM states such as dead
links, incorrect markup, and the absence of widgets, DOM
elements, and error messages; than organizing complex test
situations in which the test system applies a set of logically
related stimuli to the application and verifies the reactions to
these stimuli. Accomplishing the latter is the primary
purpose of the approach we propose in the paper, i.e. the
UniTESK technology complemented with the technique of
its use. So, the Invariant Based Testing approach and our
approach aim at revealing faults of different types; therefore
there is no point in their further comparison.

The State Based Testing approach divides test creation
into two stages. At the first stage, the FSM model of the
AJAX application under test is constructed on the base of a
set of preliminarily recorded real execution traces of the
application. The states of the FSM are abstracted from the
real DOM states. The transitions are the JavaScript method
invocations triggered by user events or server responses and
modifying the DOM. At the second stage, tests are
generated on the base of the traversal of the FSM extracted at
the first stage. The test generation is accomplished so that the
generated tests are able to automatically reveal faults leading
to the modification of a correct sequence of states in the
FSM model of the application.

Because the FSM model is constructed on the base of the
real behavior of the application, the approach is expected to
show its best in regression testing. The authors strengthen the
approach by providing the ability to express general
requirements to the behavior of the application in the form of
pre-conditions and post-conditions. This feature of the
approach makes it possible to apply it for functional testing.
An advantage of the software contracts proposed by
UniTESK is that they additionally provide test coverage
criteria. The State Based Testing approach deals with
concurrent asynchronous HTTP requests, but it only warns
whether there may be a problem. As opposed to this, our
approach reveals faults concerning multiple asynchronous
HTTP requests. The authors of State Based Testing claim
that their approach is a good complement to the classic
functional testing.

The Search Based Testing approach is based on the State
Based Testing approach. The authors propose a technique
that enhances the fault revealing capability of the tests

generated. The main features of the approach remain the
same.

A common advantage of the State Based Testing and
Search Based Testing approaches over our approach is that
they are better automated. The approaches are designed for
testing only AJAX applications, the authors of the
approaches tried to automate them as much as possible. In
contrast to the approaches, the UniTESK technology doesn’t
take the AJAX specific features into account, because it was
developed to be applicable for general purpose software.
That is why developing some of the UniTESK test suite
architecture components is a fairly labor-intensive task. For
instance, special functions should be implemented in order
that action mediator could programmatically perform actions
on web interface elements. Each particular AJAX application
requires its own functions because there aren’t two AJAX
applications that have the same interface. Other functions
should be implemented in order that catcher could get DOM
states after the reactions.

B. Approaches used in industrial practice

We examined existing test automation tools that support
functional testing of web applications. The tools that are
positioned as AJAX test automation tools implement the
Capture and Playback [16] approach. According to the
approach the tester records the user actions; saves them in a
script; enhances the recorded script with verification points,
where some property or data is verified against an existing
baseline; plays back the script and observes the results. The
Capture and Playback approach is very useful for regression
testing. It is also widely used for functional testing of classic
web applications.

In order to support testing of AJAX applications, Capture
and Playback testing tools implement either a method for
automatically detecting responses to asynchronous HTTP
requests or a method for detecting DOM state changes. Such
a method allows a Capture and Playback testing tool to
determine whether the application has already responded to
the user action during the playback stage. The Capture and
Playback approach supporting AJAX is implemented in IBM
Rational Functional Tester [17], SWEA [18], and many other
test automation tools. The Capture and Playback approach
doesn’t aim at creating complex test sequences like the
approach we propose in this paper. Using it leads to the
generation of a big amount of test scripts. A script usually
verifies a sequence of possible user actions. Week
modularity is a common disadvantage of such scripts. As
opposed to this, the test suite architecture is one of the most
competitive advantages of UniTESK.

The most flexible of the existing AJAX functional testing
techniques is to use a combination of a unit testing
framework and a software library which makes it possible to
programmatically perform actions on the application
interface and then access the resulting DOM state. An
example of such a technique is the JUnit [19] unit testing
framework complemented with the Selenium Remote
Control testing tool. By analogy with the Capture and
Playback testing tools, AJAX support is limited to designing
and implementing either a method for detecting responses to

asynchronous requests or a method for detecting DOM state
changes. Let us note that this technique is flexible because it
provides minimal support for test automation. In fact tests
are handmade, but can be executed automatically.

VII. CONCLUSION

In this paper, we demonstrate the applicability of the
UniTESK test development technology for testing the client
side functionality of AJAX web applications. We outline the
approach to testing systems with asynchronous interfaces
proposed by UniTESK, present the technique for modeling
and testing AJAX applications with UniTESK, practically
evaluate UniTESK and our technique, and compare our
approach with the existing approaches.

Though UniTESK can be used to develop test systems
for AJAX web applications, UniTESK is not an AJAX-
specific testing technique. Developing tests for AJAX with
UniTESK is a very labor-intensive task. The future work
may consist in enhancing the automation level of the
approach we propose in the paper.

In this paper, we ourselves develop AJAX applications.
Then we apply UniTESK to them. In our future work, we
should apply UniTESK to a couple of applications really
working in Internet.

Our approach can only be used for testing the client side
functionality of AJAX web applications. On the one hand,
the approach is directed to the client side faults that are
typical and specific for AJAX web applications. On the other
hand, we do not test the server side at all. Future
investigations may consist in designing an AJAX testing
technique that will take both the client side and the server
side faults into account.

REFERENCES

[1] I. Bourdonov, A. Kossatchev, V. Kuliamin, and A. Petrenko,
“UniTesK test suite architecture,” Proc. FME 2002, LNCS 2391,
Springer-Verlag, 2002, pp. 77-88.

[2] I. Bourdonov, A. Kossatchev, V. Kuliamin, and A. Petrenko,
“UniTesK: Model Based Testing in Industrial Practice,” Proc. the 1st
European Conference on Model-Driven Software Engineering
(ECMDSE), Nuremberg, Germany, Dec. 11-12, 2003, pp. 55-63.

[3] V. Kuliamin, A. Petrenko, N. Pakoulin, I. Bourdonov, and A.
Kossatchev, “Integration of Functional and Timed Testing of Real-
time and Concurrent Systems,”. Proc. of PSI 2003, LNCS 2890,
Springer-Verlag, 2003, pp. 450–461.

[4] A. Khoroshilov., “Specification and Testing Systems with
Asynchronous Interfaces,” Preprint of the Inst. for System
Programming, Russ. Acad. Sci., Moscow, 2006.

[5] V. Kuliamin , A. Petrenko, and N. Pakoulin, “Practical Approach to
Specification and Conformance Testing of Distributed Network
Applications,” Proc. ISAS'2005, Berlin, Germany , April 25-26,
2005, pp. 60-73.

[6] N. Pakulin and A. Khoroshilov, “Development of formal models and
conformance testing for systems with asynchronous interfaces and
telecommunications protocols,” Programming and Computer
Software, vol. 33, number 6, Nov. 2007, pp. 316-335, doi:
10.1134/S0361768807060035.

[7] XMLHttpRequest object specification:
http://www.w3.org/TR/XMLHttpRequest/

[8] M. Mahemoff, Ajax design patterns. Sebastopol, CA: O’Reilly
Media, Inc, 2006

[9] Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett, Proffessional Ajax
2nd edition. Indianapolis, Indiana: Wiley Publishing, Inc., 2007

[10] Wiki on AJAX containing a comprehensive collection of AJAX
design patterns:

http://ajaxpatterns.org/

[11] JavaTESK toolkit for testing Java applications with UniTESK:

http://www.unitesk.com/

[12] Selenium Remote Control web application functional testing tool:
http://seleniumhq.org/projects/remote-control/

[13] Ali Mesbah and Arie van Deursen, “Invariant-based automatic testing
of Ajax user interfaces,” Proc. the 31st International Conference on
Software Engineering (ICSE'09), IEEE Computer Society, 2009, pp.
210-220.

[14] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of Ajax
web applications,” Proc. 1st IEEE Int. Conference on Sw. Testing
Verification and Validation (ICST’08), IEEE Computer Society,
2008, pp. 121-130.

[15] A. Marchetto, P. Tonella, “Search-based testing of Ajax web
applications,” Proc. the 2009 1st International Symposium on Search
Based Software Engineering, May 13-15, 2009, pp. 3 – 12.

[16] G. Meszaros, “Agile regression testing using record and playback,”
Proc. the conference on Object Oriented Programming Systems
Languages and Applications, 2003, pp. 353-360.

[17] Rational Functional Tester web application functional testing tool:

http://www-01.ibm.com/software/awdtools/tester/functional/

[18] SWEA web application functional testing tool:

http://webiussoft.com/

[19] JUnit unit testing framework:

http://www.junit.org/

