The method of programs compression based on the
frequency characteristics of programs behaviour

Alexander Shalimov
Lomonosov Moscow State University, Russian Federation
Email: ashalimov@lvk.cs.msu.su

Abstract—This article presents a method of programs com-
pression based on the frequency characteristics of programs
behaviour. The proposed method allows us to keep in the
compiled form only frequently executed portions of programs
and to store infrequently executed portions of programs in the
compacted interpreted form, and to dynamically unpack and
load them into the memory for execution only when they are
requested. The method also allows us to control the growth
of the compacted program execution time. The theoretical and
experimental results of the research prove the possibility of using
the proposed method for programs compression in embedded
real-time controlling systems.

Index Terms—code compression; code compaction; program
compaction; decompression; program analysis; execution fre-
quency; embedded systems.

I. INTRODUCTION

Embedded real-time controlling systems is one of the main
areas of the computer engineering and software develop-
ment [1].

Let’s list the characteristics of such systems:

1) The necessity to fulfill the requirements of high relia-
bility and safety of an embedded system operation.

2) The programs must be executed in their deadlines, i.e.
program’s execution time must not exceed a given time
limit.

3) Memory limitation. Such systems have small amount of
main memory (for example, in modern aircraft available
approximately 10MB of RAM [2], [3]).

4) Systems space and weight limitations.

The complexity of tasks for embedded real-time controlling
systems is increasing, which results in consuming more mem-
ory resources. Therefore the most important characteristic of
a program for such systems is the program’s runtime memory
size.

Programs compression methods reduce the program’s run-
time memory size (memory footprint). Hence it will enable to
create major amount of services configured the system func-
tionality. Besides, the modern tendency of preferential using
of low-level programming languages for designing embedded
systems (due to the fact that using of high-level programming
languages leads to generation of exceeding program code)
may serve as an additional argument for necessity of using
programs compression methods in embedded systems.

In fact compressed programs run slower than original
programs (overhead on execution speed). But, as mentioned

above, for embedded real-time controlling systems it is impor-
tant that the programs should be executed in its deadlines. This
fact leads to the following main requirement for the compres-
sion methods: the compressed program must not exceed the
execution time limit set for the original program. As a matter
of fact there is always some gap between the time limit set for
a program and its real time execution. This gap can be used
as a time resource for compression.

Generally all program compression methods can be divided
into two main groups: without decompression process [4],
[5], [6] and with decompression process [7], [8], [9]. Pro-
grams compression methods without decompression can be
used in the embedded real-time control systems, because
they practically don’t increase programs execution time. But
its compression ratio strongly depends on the program (for
example, how often program uses the different libraries, how
many duplicated code are contained in the program, etc).
Programs compression methods with decompression have a
high compression ratio, but methods lead to considerable
increasing execution time without possibility to control this
process and the exists method can’t be used in real-time
controlling systems.

That is why it is necessary to create a program compression
method with decompression which would allow us to control
the program execution time depending on the compression
ratio.

The method presented in this article guaranties that the com-
pressed program execution time will not exceed on average
a given time limit (Sections 2, 3). Also the article contains
the mathematical dependencies for determining the possibility
of using the proposed method for a given embedded system
(Section 4). The experimental results of the research prove the
possibility of using the proposed method for programs com-
pression in embedded real-time controlling systems (Section
5).

II. METHOD DESCRIPTION

The idea of the proposed method rises from [10], [11], [12]
and is based on the following two facts:

1) For a consequent program, execution of 15-20% of the
program usually takes 80% of total program execution
time [10], [11].

2) Program presentation in the interpreted form is usually
smaller than it is in the compiled form [12].

These two facts served as a starting point for making a de-
cision to research a method, that would allow us to keep in the
compiled form only frequently executed portions of programs
and to store infrequently executed portions of programs in the
compacted interpreted form, and to dynamically unpack and
load them into the memory for execution only when they are
requested. The basic compression/decompression scheme was
first described in [9].

Offset table

i N

Compressed
code

Runtime buffer

i

call f.stub

R

call g.stub

Decompressor

o

call h.stub

Interpretator

(a) (b)

Fig. 1. Main scheme

The developed method of programs compression consists
of two main parts: program compression and the compressed
program execution. Figure 1 shows the basic principles of the
method. Consider a program with three infrequently executed
fragments of code, f, g and h, as shown in Figure 1(a). The
structure of the code after compression is shown in Figure
1(b).The code for each of these fragments of code is replaced
by a stub (a very short sequence of instructions) that invokes
a decompressor whose job is to decompress the interpreted
code for a fragment into the runtime buffer and then to transfer
control to the interpreter for this decompressed code execution.
A fragments offset table specifies the location within the
compressed code where the code for a given fragment starts.
The stub for each compressed fragment passes an argument to
the decompressor that is an index into this table; this argument
is indicated in Figure 1(b) by the label ((0), (1), ...) on the
edge from each stub to the decompressor. The decompressor
uses this argument to index into the fragment offset table,
retrieves the start address of the compressed code for the
appropriate fragment, and starts generating uncompressed in-
terpreted code into the runtime buffer. The decompressor then
transfers control to the interpreter for the generated interpreted
code execution. When this decompressed code finishes its
execution, it returns to its caller in the usual way.

The proposed idea of programs compression provides some
possibilities and advantage over the existing programs com-
pression methods.

1) Using 780-20 rule”. Using compressor/decompressor
scheme allows us to exploit 80/20 aspect of pro-
grams [10], [11]. For a consequent program the greater

part of its execution time is usually spent on a smaller
program part execution. Therefore the infrequently ex-
ecuted code compression will not lead to significant
increasing program execution time.

2) This method’s organization allows us to manage the
program compression level depending on requirements
to a program execution time and amount of available
memory. This will allow us for embedded real-time
controlling systems to consider requested time limits of
programs execution time.

3) Using software implementation of the compres-
sor/decompressor scheme enable to use programs, which
can not be fully loaded into the main memory, due
to keeping infrequently executed code fragments in the
auxiliary memory.

4) This method does not require any hardware and hence
great expenses and time losses related to adding hard-
ware to an embedded system.

III. METHOD DETAILS

The proposed method is intended to solve the following
tasks:

1) Determining frequency characteristics of programs be-
havior;
2) Determining infrequently executed portions of programs.

A. Determining execution frequency of programs basic blocks

To solve this task the author has developed the method of
determining execution frequency [13].

Given II(z1,...,x,) = {V,E} - the original sequential
program with p input parameters (x1,...,p). The program
is presented in the form of a control flow graph where the
vertices V' = {b;} (j = 1,m) represent basic blocks and
edges E = {(bj,,b;,)} represent possible transfer of control
flow from one basic block to another.

For each input parameter x1,...,x, we know a finite set
of admissible values and the distribution function for these
values. The program II(z1,...,x,) does not get caught in an
endless loop on admissible sets of input parameters (i.e. each
basic block is executed a finite number of times).

Lets use the following notations:

1) T'(x;) — the set of admissible values of input parameter
Ti;

2) &; — the value of the input parameter from 7'(z;);

3) M, =T(x1) x...xT(x,) — the set of all inputs of
power |M,| and of dimension p;

4) 1I;(&1,...,&,) — the number of basic block executions

while program running on the (&1,...,Zp).

Each input parameter can be treated as a random variable
with a given distribution function. Lets assume Xi,..., X,
random values for input parameters (x1,...,Zp).

Then, the frequency of b; we will consider as
e(bj) = Z Hj(.f?l,...,a?p) . P((X1,7Xp) =

(&1,..,2p)EM,
(Z1,...,&p)) - the value of mathematical expectation of b;
execution count.

Calculation of e(b;) requires an enormous computational
outlay comparable with an outlay for running a program on all
input values. In the paper [13] it was proposed to calculate the
frequency e(b;) with a given precision ¢ and reliability -, i.e.
to find such estimated value N; that P(|e(b;) — N;| <¢) = .

The idea of proposed approach is to use the Monte Carlo
method. In the beginning of each basic block we add a special
counter which is incremented each time when a control flow
goes into that basic block. The modified program is being
iteratively re-run. On each iteration new values for input
parameters are generated using their distribution functions.
After n program runs we will have n values of execution
counter for each basic block IT},T17, ..., II". It is proved that
Law of Large Numbers, Central Limit Theorem and the Berry-
Essen theorem are applicable for analysis of these numbers

According to the Law of Large Numbers, N; = 1/n - Z IT

— the average of the values of basic block execution counter
obtained from a large number of program runs should be close
to the mathematical expectation e(b;), and will tend to become
closer as more program runs are performed (N; — e(b;) when
n — 00).

Both Central Limit Theorem and the Berry-Essen theorem
allow us to estimate a number of program runs to get the
execution frequency with a given precision and reliability.

See the next algorithm for evaluation basic block execution
frequency.

1) Set e, 7.

2) Set counter of program runs to zero, n = 0.

3) Run modified program on a generated set of input data.
II? — the value of b; execution counter. Increase the
number of program runs, n =n + 1.

4) If n > 30 then calculate the following values (we
assume that after 30 iterations we can trust to sample
characteristics). Else go to step 2.

a) N;j =1/n- " I} — the average,
i=1

b) 53 = 15 - > (I} — N;)? — the sample variance,
i=1

¢) my = A5 - Y (Il — N;)® — the sample third
i=1
central moment.

045m‘;’? “HJ

5) If the 52 < 19 and n >

2)
5 s; then N;

evaluates e(b;) with a given precision and reliability
(W14~ Lty - quantile of order H‘—” of the standard normal

law) Else go to step 2.

Note, that this algorithm is not applicable to basic blocks
with constant execution frequency (i.e. if a basic block execu-
tion counter does not depend on input data or probability of its
execution is closer to zero). Therefore if during the program
runs the execution counter of some basic block remains the
same, then the final decision about the execution frequency
of such basic block should be taken by a programmer, i. e. a
programmer should decide to continue programs reruns or to
stop.

B. Determining infrequently executed code
Lets use the following notations:

1) threshold 6 — the part (quota) of a total program execu-
tion time that infrequently code can account for. Le. if
execution time of any program’s code is less than 6, then
this code is called infrequently executed (how to choose
threshold are described in Section 4). Note further we
assume that execution times of instructions are the same
and take one unit of time (program execution time
is measured in the number of instruction executed at
program runtime).

2) weight(b;) = e(b;) - |b;| — the weight of a basic block
be the number of instructions in the block multiplied by
its execution frequency.

3) T, Z weight(b;) — the average number of instruc-

J=
tions executed at program runtime.

We consider all basic blocks in the program in increasing
order of execution frequency until the sum of their weights will
not exceed 0 - T,,. All selected basic blocks are considered to
be infrequently executed.

IV. METHOD APPLICATION

This section is about the mathematical dependencies for
determining the possibility of using the proposed method for
a given embedded system. Use the following notations:

1) 7 > 1 — the coefficient of admissible increasing of a
program execution time. This coefficient is necessary
for using a gap between actual and requested execution
time.

2) A(#) — the compression ratio achieved by using the
proposed method. It is calculated empirically for a given
implementation of the method.

3) I — the number of instructions used for execution of a
single interpreted command.

4) M - the amount of additional memory for using the
proposed program compression method.

It is important to note that last three parameters are the
characteristics of a given implementation of the method (see
next section).

The proposed method stores infrequently executed portions
of programs in compacted interpreted form and dynamically
executes them. According with infrequently code definitions,
no more than 6 - T,, executed instructions are transformed.
So, the count of executed instruction growths on 6 - Ty, - [
instructions and the total execution time of compacted program
isequal to (1—6) Ty +0-Tyy-I = (140-(I—1))- Ty, This
time should be not more than 7T}, and (140-(I—1))- Ty, <
T - Ty,. Therefore, in order to compacted program execution
time not to exceed a given time limit, the threshold 6 should be
no more than 7= 1 . Note that it is only guaranteed on average,
because determmmg of infrequently executed code based on
average execution frequencies of basic blocks.

The memory overhead resultant from a programs compres-
sion method use must not exceed the amount of memory saved

due to code compression. Therefore it is necessary to select
programs with total memory footprint exceeded #@.
Then for using the proposed method it is necessary:
1) Choose parameter 6 < 7=1.
2) Choose for compression programs whose total size more
than 1—L
3) If the above conditions (1, 2) can not be concurrently
met or a greater compression ratio should be gained,
then it is possible to add the requirement to increase the
system performance in w times.
If to follow the above recommendations on use of the
proposed code compression method, it is guaranteed, that
programs execution time will increase on average no more

than in 7 factor with the compression ratio A(6).

V. METHOD IMPLEMENTATION

The system of programs compression implemented the
proposed method is written on the C++ language. It consists
of two parts: program compression and compressed program
execution (see Figure 2). The input for the system is a program
for compression (written on C language), a distribution func-
tions of program’s input parameters, and maximum quota the
program total execution time. The output is the compressed
program and files with an offset table and compressed inter-
preted code.

The compressor transforms infrequently executed program
code into the interpreted presentation and compresses it as
a text. Based on distribution functions of input parameters
the compressor determines average execution frequency of
program basic blocks. The threshold and average frequencies
calculated for a given program are used to determine fragments
of infrequently executed code. The infrequently executed code
are grouped that the memory overhead due to their compres-
sion would not exceed the code size reduction that can be
achieved.

The decompressor consists of two main parts: the interpreter
and a service of decompression of compressed interpreted
code.

Compressor Decompressor

estimating of frequency characteristics of
programs behavior

Interpretator

generating of
uncompressed
executable code

determining of infrequently executed code

determining of comressible regions

managment of
program execution

code comression

Fig. 2. Implemetation scheme

Programs for an on-board aircraft computer system were
used for testing the proposed method implementation [14].
The aim of the work was to determine dependency between
input parameter ¢ and the compression ratio achieved as a
result of using the proposed method.

On each test program the system runs 10 times with
different values of ¢ (0.1,0.2,...,1). The compression ratios
A(f) obtained for each run were saved and averaged after
finishing of all the experiments. This resulted in getting the
following dependency presented in the Figure 3.

X6)

09
08
o7
06
0.5
0.4
0,3
0.2
0,1

0 0,25 05 0,75 6

Fig. 3. Compression Ratio

So, for & = 1 the best compression ratio was achieved
A(0) = 77%. For § = 0.5 the compression ratio A\(6) = 89%
is achieved. For 0.2 < 6 < 0.4 the grade of the compression
ratio decreases. Therefore it is necessary to choose the input
parameter from the recommended (given, specified) range.

VI. CONCLUSION

This article represents a program compression method based
on the frequency characteristics of programs behaviour. The
implementation of the proposed method has been written on
the C++ language. Testing of this implementation was aimed
to determine the dependency of the compression ratio on the
input parameter for the system implemented the proposed
method. For testing the system were used the real programs
for on-board aircraft computer systems. The testing results
prove the possibility of using the proposed method for on-
board embedded systems.

The proposed compression method allows us to control the
program execution time depending on the compression ratio.
The mathematical dependencies guarantee that compressed
program execution time will not exceed on average a given
time limit.

It should be noted, that the proposed method is universal
and can be used not only in embedded systems.

REFERENCES

[1] Embedded Computing
computing.com)

[2] K. Kolpakov History of onboard embedded systems in Russia / PCWeek,
N32, 1999

[3] A.M. Paviov Principles of organization of advanced onboard computing
systems [HTML] (http://www.mka.ru/?p=41177)

[4] B. Bus, D. Kastner, D. Chanet, L. Put, B. Sutter POST-PASS Compaction
Techniques // Communications of the ACM August 2003/Vol. 46, No.8

5] Sheayun Lee, Jaejin Lee Selective code transformation for dual instruction
set processors // ACM Transactions on Embedded Computing Systems
(TECS), Volume 6, Issue 1, May 2007

Design [HTML] (www.embedded-

[6] B. Sutter, K. Bosschere Software techniques for Program Compaction //
Communications of the ACM August 2003/ Vol. 46, No.8

[71 TM. Kemp, R.M. Montoye A Decompression Core for PowerPC //
IBM Journal of Research and Development, Volume 42 Number 5/6,
September, 1998

[8] S. Seong, P. Mishra Bitmask-Based Code Compression for Embedded
Systems // IEEE Transactions on computer-aided design of integrated
circuits and systems, 2007

[9] S. Debray, W. Evans Profile-Guided Code Compression. // Proceedings of
the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, 2002

[10] R.L. Smeliansky, D.E. Guryev, A.G. Bahmurov About one mathematical
model for calculation of programs behavior. Programming, N6, 1986

[11] R.L. Smeliansky, T. Alanko On the calculation of control transition
probabilities in a program Inform. Processing Letters N.3, 1986

[12] P. Brown Macros without tears // Software: Practice and Experience.
Volume 9, Issue 6, 1979

[13] A.V. Shalimov Method of determining execution frequency of programs
basic blocks // Modeling and analysis of information systems, Volume
18, Number 2, 2010.

[14] DrTesy [HTML] (http://lvk.cs.msu.su/index.php/articles/65)

