
Programming as a part of the Software Engineering education

Maksimenkova Olga

State University Higher School of Economics
Moscow, Russia

e-mail: omaksimenkova@hse.ru

Vadim Podbelskiy

State University Higher School of Economics
Moscow, Russia

e-mail: vpodbelskiy@hse.ru

Abstract — Programming for the first-year undergraduates

starts as a part of “Computer science” academic subject. Some

traditional methods of teaching programming are popular in

higher education in Russia nowadays. A different method,

which is used as a part of Software Engineering education in
our University, is described in this article.

Keywords: software engineering; software engineering

education; computer science

I. INTRODUCTION

Software engineering is a modern and complicated field
of knowledge. Following the SWEBOK it contains such
knowledge areas as software requirements, software design,
software construction, software engineering process and so
on. A place of our teaching interests laying in the software
construction part. The term software construction refers to
the detailed creation of working, meaningful software
through a combination of coding, verification, unit testing,
integration testing, and debugging [1]. As we can see coding
is associated with the other fields of knowledge. In any
training course, which is connected with software
engineering, a teacher should provide and explain this
connection at any stage of teaching.

The academic subject “Computer science” within the
bounds of Software engineering education is a significant
brick to train specialists in this field.

II. STRUCTURED PROGRAMMING LANGUAGES AS A BASE

“Computer science” as a course is traditionally widely
connected with coding, algorithms and data structures [2].
Traditional higher education in Russia supposes one of the
structured programming languages such C or Pascal to be
taught to the first-year students.

Of course, such languages as C play a significant part in
further education, because of that the most of modern
programming languages (Java, C++, C# etc.) are based on
theirs syntax. Some students, however, have an experience in
structured programming from schools and special lyceums,
but they should repeat lots of basic concepts at first time.
Therefore, they lose interest to the main course and, for
example, teachers need to prepare problems for all and for
the advanced listeners to keep their interest. If advanced
listeners had to solve easy problems in the beginning they
couldn’t have concentrated further on the new for them
concepts of course.

III. OBJECT-ORIENTED PROGRAMMING LANGUAGES AS A

BASE

The main idea of our course is to teach first-year students
to use theory in the field of information technologies and
programming skills to describe algorithms using one of the
up-to-date programming languages. Graduating student
should have “live” knowledge, which he can successfully use
in his day-to-day activity.

Object-oriented technology is widely used in software
design and development nowadays. So it should have been
quite reasonable to use one of modern object-oriented
programming languages as a base for course. That’s why we
chose C# for our first-year students. C# specification
supposed C# to be a simple, modern, general-purpose,
object-oriented programming language [3].

IV. TARGET AUDIENCE

“Computer science” is lectured during an academic year
to the first-year undergraduates. The most of our students
come to the University just after graduation from secondary
schools, so we expect basic school knowledge in the field of
Math and Computer science. In reality, only mathematical
skills are more or less equal. As for basic skills of our
students in computer science, they are quite different. Mainly
just because of absence government curriculum for the
Computer science in schools. Some of our students, for
example, lyceums-graduates or programming competition
winners have an experience in programming. The others
have basic school knowledge or haven’t got any special
knowledge in “Computer science” at all. Anyway, each other
should be involved and should be given a chance to be a
success.

V. THEORY AND PRACTICE

The whole course of studies consists of two widely
connected parts. First of them is the course of lectures and
the second one is practical training.

Course of lectures is given to students during an
academic year, which is approximately 86 academic hours,
as it postulates in the curriculum. Students also take practical
trainings, which are given during 88 academic hours
following the curriculum.

Curriculum also specifies self-instruction during 204
academic hours for the “Computer science” course.

Course of lectures contains not only theoretical material
but general practical examples with significant algorithms

and data-structures, as well. Theoretical concepts of
structured programming and basic rules of object-oriented
programming are also included into the course of lectures.

Practical trainings consist of set of C# examples and a list
of problems to self-instruction. Theoretical material from the
course of lectures meets its practical application on the
practical trainings. Students consolidate knowledge and gain
programming experience during these lessons.

We use multimedia means to represents material and
make our lessons more interactive and efficient. Materials of
practical trainings with a home task are sent to the students
every week after lessons.

VI. TEST CHECKS

Test checks are represented by class written tests, home
written tests, computer-based module-tests and yearly
project.

Written tests involve one or two short problems to be
done using Microsoft Visual Studio 20xx at class. Students
write their programs for 40-60 minutes, it depends on
difficulty of an introduced written test. We appraise written
tests using special criteria. In them such characteristics as
correspondence of a program with a task, functionality of a
program, its failure stability and so on are taken into
consideration. So, students not only take skills in
programming and algorithmization, but learn basic maxims
of development like constructing functionality programs in
limited time.

Home written test is unassisted work of students. In
which they should implement a program and provide it with
simple documentation. Variant of a home written test is more
complicated as opposed to class written test variant. It can
contain, for example, wider class structure, more difficult
collaboration between classes, user’s interface design and
data processing layer development. Results, which are
reached during the home work, are a great help for students
in yearly project (see “Yearly project” topic).

Our school year is divided into five modules – 7 weeks
each. So students take a computer-based module-test five
times a year during a test period. Each test consists of 30-40
questions of the different types. Usually we use multiple
choice questions, multiple response questions and short-
answer questions. Students are tested during 40 minutes.
Topics of the test problems involve theoretical and practical
questions of a current module.

VII. YEARLY PROJECT

Yearly project isn’t completely included into the
academic subject “Computer science”. But it should
represent a working application with a documentation
package. In yearly project our University carries out an
interdisciplinary approach in education. Such a project,
obviously, do a lot of good for our students, because they
gain not only programming experience, but obtain
experience in such fields of software engineering as software
requirements, software design, software construction, etc.

Within a “Computer science” academic subject we offer
our student a simple method of how to develop a program
easily. This method has grown up from an Agile software

development methodology, to be more precise, from
Extreme Programming. Extreme Programming, XP for short,
is an Agile software development methodology that is made
up of a collection of core values, principles, and practices
that provide a highly efficient and effective means of
developing software [4].

For sure, we didn’t have a goal to teach first year students
such complicated methodologies. We only used some main
ideas of them to answer a hidden question: “How to develop
a yearly question?” We provided our first-year
undergraduates with a method which helps them to develop a
huge application without lots of mistakes. We for ourselves
called this method “Evolutional approach”.

VIII. EVOLUTIONAL APPROACH

Every beginner programmer, like our first-year
undergraduates, has a variety of troubles in making
programs. Efficient but complicated software development
methodologies are not suitable for him. Troubles in
development may lie even in choosing algorithm or standard
library. Sometimes, beginner programmer starts to develop
an application without realizing what kind of means or
structures will be needed for its implementation. Each
beginner programmer is a software architect, developer and
tester at the same time. Our main task, as tutors and teachers,
is to help beginner programmers to solve all the problems in
a way of implementation their applications.

Evolutional approach, following the traditional software
development methodologies, gives next recommendations:

1. Development should be carried out by steps, each of
those contains: design (including interface design),
coding (including syntactic and semantic debugging)
and testing.

2. Stages of development informally divide into two
types: research stages and development stages,
which give software new functionality according to a
requirements specification.

3. In spite of type, the first stage provides creation of
working software with the minimum functionality.

4. The analysis of a current version of software is
carried out at the end of the each stage of
development. A goal of analysis is to assess
possibility of adding constructions for
implementation new, additional requirements
according to a requirement specification.

5. On basis of analysis results refactoring of a current
version is taken place or project decisions are
accepted, coding and testing are carried out.

6. Software, staying in up state, obtains new, or
changes current functionality at the end of each
stage.

Thereby, software every time stays in up state, and
changes makes permanently in it. In the other words,
software is evolving from step to step and its functionality is
growing from minimum to wishful (given in requirement
specification).

IX. MARKS

It should be said that in our University we use ten marks
from 1 to 10. Marks less than 4 are unsatisfactory, 4 and 5
are satisfactory, 6 and 7 are good, 8, 9 and 10 are excellent
marks.

Modular and total marks are accumulative. They are
calculated using special weighting coefficients for each
current mark. As far as all the marks are quite complicated
we are giving, as following, formulas we have used this year:

A. Module 1, 2, 5, current marks:

Μi = min(κi, τi), if κi < 4 or τi < 4,

else

Μi = 0.5 * κi + 0.5 * τi,

there i =1, 2, 5 – number of modules; κ – written test

mark, τ – computer-based test mark.

B. Total mark after module 2:

Θ2 = 0.4 * Μ1 + 0.6 * Μ2,

there Μi – modular current mark, i = 1, 2.

C. Module 3, 4, current marks:

Μi = min(κi, τi, ζi), if κi < 4 or τi < 4 or ζi < 4,

else

Μi = 0.3 * κi + 0.4 * τi + 0.3 * ζi

there i = 3, 4, κ – written test mark, τ – computer-based

test mark, ζ – home written test mark.

D. Total mark after module 5:

Θ5 = 0.3 * Μ3 + 0.35 * Μ4 + 0.35 * Μ5,

there Μi – modular current mark, i = 3, 4, 5.

E. Total yearly mark:

Θy = min(τt, κt), if τt < 4 or κt < 4,

else

Θy = 0.3 * Θ5 + 0.35 * τt + 0.35 * κt,

there Θ5 – total mark after module 5, τt – total computer-

based test mark, κt – total written test mark.
As it is shown in formulas, each mark has a special

threshold value of current marks. Usually written test mark is
one of them, the others are depended on a structure of a
module. If one of threshold values is unsatisfactory the

whole accumulative mark should be unsatisfactory, even
though all the others are satisfactory.

X. RESULTS AND STATISTICS

Described way of teaching programming within the
bounds of “Computer Science” is taught by authors for
almost three years.

Some statistics for second, fifth modules and yearly
project of the last two years is following. We don’t give
statistics for a current year because of it incompleteness.

We didn’t use computer-based modular test in 2007-2008
academic year Fig. 1.

Figure 1. Statistics 2007-2008 acad. year.

We started using computer-based modular test as a test
checks in 2008-2009 academic year Fig. 2.

Figure 2. Statistics 2008-2009 acad.year

CONCLUSION

This work describes educational measures in the field of
teaching programming as a part of Software engineering
education within the bounds “Computer science”. All these
measures are successfully taken for three years in State

University Higher School of Economics by Software
engineering department.

REFERENCES

[1] SWEBOK. Software Engineering – Guide to the Software
Engineering Body of Knowledge (SWEBOK). First edition, - Geneva

(ISO/IEC 19759: 2005(E)). – 173 pp.

[2] Lethbridge, T.C., Leblanc Jr., R.J., Kelley Sobel, A.E., Hilburn,
T.B., Diaz-Herrera, J.L. SE2004: Recommendations for

undergraduate software engineering curricula (2006) IEEE

Software, 23 (6), pp. 21-25

[3] ECMA-334. C# Language Specification. 4
th
 Edition / June 2006, -

Geneva (ISO/IEC 23270:2006). – 553 pp.

[4] G. Pearman, J. Goodwill, “Pro .NET 2.0 Extreme Programming”,
Berkeley: apress, 2006, pp. 3 – 17.

