
Test data generation for covering functionality of database applications

Evgeny Kostychev, Vitaly Omelchenko, Sergey Zelenov

Institute for System Programming

at the Russian Academy of Sciences

Moscow, Russian Federation

e-mail: {kostychev, vitaly, zelenov}@ispras.com

Abstract—Applications for processing great volumes of data is

a very widely used kind of software. In enterprise integration

there are tasks of data integration. When solving these tasks,

special tools supporting development and execution of

applications implementing extract, transformation and load

pattern are often used. From the point of view of functional

testing, such applications have a specific peculiarity related to

a huge number of combinations of input data. Existing

approaches and tools solving the problem of test data

generation for database application build large arrays of input

data based on database scheme or on SQL queries of

application under tests. To ensure covering functionality of an

application under test using these approaches and tools, a

brute force of all available combinations is needed. In the

paper, we prpose a method allowing less excessive data

generation for covering functionality of database applications.

It allows achieving functionality coverage with acceptable

amount of test data close to optimal one (one test per one

functionality branch) in acceptable generation time.

Test data generation; database applications; functional

testing; data integration; ETL-applications testing

I. INTRODUCTION

Nowadays, availability of more and more increasing
volumes of information storages and computing resources
for their processing is constantly growing. This yields
prevalence of applications working with huge amount of data
in various areas. For instance, in the early nineties of the last
century, the British national corpus has been created. This is
a specially marked and processed big set of printable and
audio texts containing 100 million words for more than
twenty years' interval [1]. Since then, such national corpora
of many languages have appeared and continue to appear and
develop. The corpora not only make many traditional
problems of linguistics more trivial, but also allow to state
and to solve previously impracticable problems primarily
related to processing of great volumes of data [2]. Also
problems concerned with processing of great volumes of
data rise in such areas as statistics, sociology, geophysics,
some sections of physics, molecular genetics, problems with
climate, meteorology.

Storage and processing great volumes of data is crucial
for modern business too. Enterprise systems contain huge
volumes of interconnected data concerning consumers and
customers, suppliers, partners, equipment and personnel,
financial streams, various business transactions. Huge

volumes of data are usually stored in structured form in one
or several databases under control of one or several DBMS.
Often, supporting various business needs require an
integration of several subsystems of an enterprise system or
even connecting to some parts of external systems. In many
such cases, a problem of access to and operating with data
stored in different databases in various formats rises.
Therefore, data integration applications that perform
replication, updating and synchronization of great volumes
of data form a widespread kind of integration applications.

Tasks of such applications can be simple themselves but
not always easy for implementing (for example, selection of
data concerning some person or legal entity). The tasks can
also be enough difficult both in conditions of
selection/aggregation of input data and in calculation of final
result (for example, invoicing clients according to volume of
actual service consumption, tariff plans, and provided
discounts). Since this kind of tasks frequently occurs when
solving the integration problems, there are specialized
platforms providing universal (with respect to platforms for
data storage) environment for development and running
integration applications that effectively solve problems of
extraction, transformation and loading of big data [3].
Further we refer to such applications as ETL-applications
(Extract, Transform and Loading).

After development or updating of any application, one
should check correctness of its behavior with respect to the
functional requirements implementing the business needs.
The business logic of ETL-applications can be detailed as
follows:

- extraction source data that meet corresponding
conditions defined in requirements;

- changing values of source data with respect to
conditions defined in requirements;

- transformation of input data (changing values
and/or representation format) according to
requirements;

- loading into target some data that should be loaded
according to requirements;

- changing in the target some data that meet
corresponding conditions defined in requirements.

Mainly, one checks correctness of implemented behavior
by means of functional testing. That is running the system
under test (SUT) on specially prepared input data and
comparing output data with expected ones. In the paper, we
consider the problem of generating input data for functional

30

A

20

10

B

0 10 20 30

Figure 1. Optimazation of iterating by semantics.

testing of ETL-applications. Note that ETL-applications
contain all the same steps as any database applications (data
extraction, transformation and loading). Therefore, proposed
method is applicable not only to ETL-applications but to
many other database applications too.

One can estimate quality of functional testing by
achieved coverage of functional requirements. Ideally, all
functional branches of the algorithm implementing required
functionality should be covered. To perform that, one should
provide such test data that force SUT to do the following:

- retrieving data from the source and filtering them on
all possible combinations of conditions specified in
the requirements;

- covering during data transformation all possible
functional branches of the algorithm implementing
the required transformation;

- possibility to check the absence of unnecessary
changes of source and target data;

- processing special data (empty columns, lines of
limited length, etc.).

As a rule, a test is defined by some parameters.
Obviously, all possible combinations of parameters contain
combinations needed for covering the functionality of the
application under test. But in real situations, when generating
all possible combinations, the number of parameters to be
combined causes combinatorial explosion. In this case,
besides of unacceptable generation time and total amount of
test, resulting test set contains many different test data values
not distinguishable for SUT functionality. A problem of
analyzing test results rises: the same errors may be revealed
on thousands of different values of test data, and thus, time-
consuming analysis is required.

Ideally, for covering functional requirements, test data
should provide exactly one possible combination of Boolean
expression for each functionality branch. The paper describes
a method of generating test data with volume close to the
optimal set.

The rest of this paper is organized as follows. Section II
contains some preliminaries. Section III reviews related
work. Section IV describes proposed method. Section V
illustrates the proposed method by example. Section VI
discusses benefits of the proposed methods. Section VII
concludes the paper.

II. PRELIMINARIES

In general, to ensure full coverage of all functional
branches, one should use brute force combination of field
values depending on which branching should occur when
retrieving, when running an application under test. But it
leads to the combinatorial explosion causing unacceptable
cost on generation time and total volume of test data.

Often, in terms of functionality coverage, values of
several fields are related by some semantics, which means
that value of one field depends on values of some other
fields. As a rule, iterating only the combinations of values
meeting this semantics greatly reduces the total number of

variants. Let us consider the following example. Let fields A

and B take integer values in the range [1 .. 30] and

value of the field B depends on value of the field A as
follows (see Figure 1):

- if 1 ≤ A ≤ 10, then B = 1;

- if 11 ≤ A ≤ 20, then 11 ≤ B ≤ 20;

- if 21 ≤ A ≤ 30, then B = A.
When producing not all the possible combinations of

values of the fields, but only ones meeting the above
conditions, the amount of derived combinations is about 8
times reduced (from 900 to 120).

Besides, the functionality of an application under test can
have several independent aspects. In this case, it is possible
to reduce the number of combinations using so-called
diagonal combinator iterating a set of tuples S such that for
any i (1 ≤ i ≤ n) and for any s from Si there exists a tuple
(s1,…,sn) from S with s = si, where Si is a set of values
iterated by i-th subiterator. This method ensures producing a
set of test data containing every value of each field. The
main advantage of this combination method is that the
volume of result test data is significantly less than in the case
of using Cartesian product, since the capacity of produced set
equals the maximum of capacities of value sets of combining
fields instead of product of them.

III. TOOLS REVIEW

Most data generation tools for DB (DTM Data Generator
[4], Turbo Data [5], DBMonster [6]) support filling the
database tables by a large number of syntactically correct
data and provide the following set of features:

- random data generation with ability to specify intervals
of numeric types, length of string type, and data format;

- data generation from the list of values with ability to
specify the percentage of each list row in generated
data set;

- generation by selecting data from specified tables;
- generation by selecting data from files;
- generation of auto incremental data with specified

initial value and step;
- data generation from existing libraries;
- random data generation by a mask;
- data generation for dependent tables;
- data generation based on external processes of

generation specified by user procedures.

Some tools (AGENDA [7], HTDGen [8]) support the
generation of data not only on the basis of constraints
defined by schema or user, but also based on SQL queries of
database application under test. It allows generating such
data that SQL queries of an implementation under test return
some meaningful results. However, when generating data is
based on an implementation, there is no guarantee of
covering all functional branches because the implementation
may contain wrong branches or does not implement the
required ones. Also this approach does not allow covering all
required functional branches of transformation and filtering.

In order to achieve full coverage of all functional
branches using any of mentioned above tools a tester has to
use brute force combination of field values, depending on
which an application under test extracts, transforms and
filters data.

The Pinery test generating tool developed at ISP RAS
[9, 10] is intended to generate structurally complex test data.
Generating data having some syntactic structure is managed
by specifying constraints on desired data fragments in the
terms of the structure. In particular, Pinery supports so-called
conditional constraints that should be used if generation of
some part of data depends on values of some other parts of
the generated data.

In Pinery, there are many various ways to specify
constraints on values of fields. Some of them are:

- enumerating a list of desired values;
- defining a function depending on values of other

fields;
- specifying a set data to be belong, for example:

- a segment of integers;
- a set of values of another field (e.g., in the case of

assignment of values for a foreign key).
Another important kind of constraints is specification of

way to combine values of fields. In particular, it is possible
to build a hierarchy of different combinators containing
Cartesian products, diagonal combinators and custom
combinators based on dependences between values of
different fields.

These features allow a tester to customize generation
more exactly and, as a result, to receive test data with
volume close to optimal one.

IV. METHOD DESCRIPTION

The method of directed generation of test data is based
on UniTESK [11, 12] approach to model-based testing and
consists of the following phases.

The first phase is requirements elicitation: analytics study
normative documents for the system under test, identify
input data requirements and categorize them. The result of
the phase is a requirements catalogue that contains precisely
formulated input data requirements, classified into several
groups with established links between them. The catalogue is
used on the following phases.

The second phase is formalization of requirements.
Elicited input data requirements get specified using
appropriate formal notation. Such specification is called
formal model.

Figure 1. Phases of model-based testing.

The third phase is formulation coverage criteria: the input
data domain divides into finite number of subsets (possibly
intersecting each other), such that for each subset S, behavior
of the SUT on any data from S is uniform. The starting point
for such a division is a set of conditions from the
requirements catalogue. Besides, the specific semantics of
these conditions may force a tester to formulate some
additional hypotheses on behavior of the SUT that induce a
subdivision of the input data domain into smaller subsets.

The fourth phase is automated tests generation from the
formal data model with respect to the coverage criteria. In
our approach, automated generation is carried out using the
Pinery generator tool. Input data for Pinery are:

- formal description of the test data model, and
- generator configuration aimed at achieving the

coverage criteria.
Tests running, reports analysis, defects identification and

corrections is beyond the scope of this article. These issues
are not discussed here.

V. EXAMPLE

Let us illustrate the proposed method by the following
example of test data generation for testing simplified bank
credit system.

 The normative document is the following informal
description of the bank credit system.

 The client of certain type registers in the system and
receives an identifier.

 The client gets a sum of money as a loan that should
be repaid in few months.

 The client should monthly repay the sum calculated
as current debt divided by quantity of months before
the loan termination.

 If actually repaid sum is less than the calculated sum
of monthly payment, then the client can be penalized.
If actually repaid sum is greater than the calculated
sum of monthly payment, then the client can get a
bonus. Sizes of penalties and bonuses depend on both
client type and credit type.

 The client can declare to get monthly e-mail
notifications about the state of the loan, repayments
and penalties or bonuses.

 At the end of each month, the application does the
following:

A. it reduces the debt by the sum of the client
repayment and calculate the penalty or the bonus
with respect to the following rules.

Documentation

analysis

Normative
documents

Catalogue of
requirements

Formalization of
requirements

CRITERIA

- …

- …

- …

- …

 Model of
the SUT

Formulation

coverage

criteria

Coverage
criteria

Generation
of test data

Test
set

I. If the sum of client repayment is less than
monthly payment, then:

1. clients of the type "VIP" should not be
penalized;

2. clients of the type "USUAL" should be
penalized with the sum equal to 3% of the
overdue payment.

II. If the sum of client repayment is not less than
the monthly payment and not more then the
current debt, then:

1. clients of the type "VIP" with the loan of the
type "B" and clients of the type "USUAL"
with the loan of the type "A" should get
bonuses equal to 2% of the repaid sum;

2. clients of the type "VIP" with the loan of the
type "A" should get bonuses equal to 5% of
the repaid sum;

3. clients of the type "USUAL" with the loan of
the type "B" should get bonuses equal to 1%
of the repaid sum.

III. If the sum of client repayment is more than the
current debt, then the bank personnel should be
notified about refund.

B. If the client has declared monthly e-mail
notification, then the e-mail should be sent.

At the first phase, we analyze the normative documents
and build a requirements catalogue. In this example, the
requirements catalogue consists of the items of the bank
credit system behavior rules (both A with sub-items and B).
They can be represented in the form of the diagram (see
Figure 3).

Figure 2. Diagram of bank credit system requirements.

TABLE I. BEHAVIORIAL PARAMERTERS OF BANK CREDIT SYSTEM

Short

Name
Full Column Name Type Description

MP MONTH_PAYMENT NUMBER
Sum to be pay

monthly

D DEBT NUMBER Total debt sum

P REPAYMENT NUMBER
Actually repaid

sum

CL CLIENT_TYPE CHAR

Client type:
"V" – VIP client

"U" – USUAL

client

CR CREDIT_TYPE CHAR

Credit type:

"A" – type "A"

"B" – type "B"

E EMAIL STRING E-mail address

At the second phase, we build the formal model of the

requirements.
The behavior of the application under test depends on the

parameters presented in TABLE I.

The constraint of data consistency is MP <= D.
The requirements can be formalized as follows:

A.I P < MP && CL = "V" => penalty 0;

P < MP && CL = "U" => penalty 3%;

A.II.1 MP <= P <= D
&& (CL = "V" && CR = "B"

 || CL = "U" && CR = "A"

)

=> bonus 2%;

A.II.2 MP <= P <= D
&& CL = "V"

&& CR = "A"

=> bonus 5%;

A.II.3 MP <= P <= D
&& CL = "U"

&& CR = "B"

=> bonus 1%;

A.III P > D => refund.

B. E ≠ "" => notification.

At the third phase, we formulate coverage criteria.
Besides the requirement conditions, we introduce the

following additional hypotheses about behavior of the
application under test:

1. If MP <= P <= D, then behavior of the application
can differ in the following cases:

 MP = P = D;

 MP = P < D;

 MP < P < D;

 MP < P = D.
2. If conditions of the requirement A.I hold, then

behavior of the application can differ in the following
cases:

 CL = "V" && CR = "B";

 CL = "U" && CR = "A".
Here we proceed with establishing rules for division the

input data domain into subsets with uniform behavior of the

Monthly<=Repay<= Debt

VIP USUAL

Repay<Monthly

USUAL VIP

Repay>Debt

Loan

‘A’

Loan

‘B’

Loan

‘A’

Loan

‘B’

A

Penalty

0

Penalty

3%

Bonus

2%
Bonus

5%

Bonus

1%
Refund

B

e-mail is

specified

Notification

application. First, we formulate such rules separately for
each parameter, and then we state how to combine these
rules for the whole input data domain.

Let us establish division rules for parameters MP, D, P,

CL, and CR, that relate to requirements from the A group.
The hypothesis 1 yields the following division of input

data for parameters MP and D into two subsets:

 MP = D;

 MP < D.
Conditions from the requirements of the A group yield

the following division rules for parameter P.

 If condition MP = D holds, then domain for

parameter P divides into three subsets:

 P < MP;

 MP = P = D;

 P > D.

 If condition MP < D holds, then domain for

parameter P divides into five subsets (taking into
account the hypothesis 1):

 P < MP;

 MP = P < D;

 MP < P < D;

 MP < P = D;

 P > D.
Conditions from the requirements of the A group yield

the following division rules of input data for parameters CL

and CR.

 If condition P < MP holds, then conditions from the
requirements of the A.I group yield division into two
subsets corresponding to all possible values of the

parameter CL.

 If condition MP <= P <= D holds, then conditions
from the requirements of the A.II group and the
hypothesis 2 yield division into four subsets
corresponding to all possible combinations of values

of parameters CL and CR.

 If condition P > D holds, then the condition from
the requirement A.III yields no division (or, formally
speaking, division into one set).

Next, let us establish division rules for the parameter E
that relate to the requirement A.II. The condition from the
requirement A.II yields division into two subsets: with empty

and non-empty value of E.
Next, let us state how to combine these rules for the

whole input data domain.
Division of input data domain related to parameters of A

group (MP, D, P, CL, and CR) is induced by Cartesian
product (taking into account all dependencies) of divisions
for each of the parameters.

Since behavior of the application under test has two
independent aspects A and B, then division of the whole
input data domain is induced by the diagonal combination of
the divisions corresponding to A and B.

At the fourth phase, we generate tests automatically using
the Pinery generator tool.

First, we should provide Pinery with formal description
of DB scheme (for example, using the DDL-subset of SQL).
Next, we should configure Pinery by constraints on data to
be generated. These constraints are described in terms of the
DB scheme elements.

In our example, there is one table CREDITS with the
following fields: MONTH_PAYMENT, DEBT,
PAYMENT, CLIENT_TYPE, CREDIT_TYPE, EMAIL.
Further we refer these fields by their short names.

In this example, there are two kinds of constraints:

 Constraint on values of one field;

 Constraint on combination method for several fields.
First, we describe constraints of the first kind.

In order to cover subsets with MP = D and MP < D, we

may put, for example, MP = 6, D = 6 and D = 30. In
order to cover subsets with empty and non-empty E, we may

put, for example, E = "" and E = "…@…" (some address).
In order to configure Pinery with these values, we should

describe the following constraints that enumerate lists of
values for each field

1

MP = { 6 };

D = { 6, 30 };

E = { "", "…@…" };

These are examples of so-called unconditional
constraints that specify values valid in all cases.

However, sometimes we must not use unconditional
constraints. For example, values of the field P depends on

values of fields MP and D. Thus, we should use two

conditional constraints: for the cases MP = D and MP < D.

In order to make condition P < MP hold, we may put

P = MP – 1. In order to make condition P > D hold, we

may put P = D + 1. If condition MP <D holds, then in

order to make condition MP < P <D hold, we may put

P = (MP + D)/2. As a result, we have the following

constraints for the field P:
P[MP<D] =

 {MP-1, MP, (MP+D)/2, D, D+1};

P[MP=D] = {MP - 1, D, D + 1};

Values of fields CL and CR depends on values of fields

P, MP and D:
CL[P<MP] = { "V", "U" };

CR[P<MP] = { "A" };

CL[MP<=P && P<=D] = { "V", "U" };

CR[MP<=P && P<=D] = { "A", "B" };

CL[P>D] = { "V" };

CR[P>D] = { "A" };
Here we proceed with description of a combinator of

fields values for generation of CREDITS table tuples.

In all cases, we may combine values of fields CL and CR
using Cartesian product:

Product(CL, CR)

Similarly, we may combine values of fields MP and D:
Product(MP, D)

1 In Pinery, constraints are described in XML form. In order to

increase readability, here we describe constraints in a semi-formal pseudo-

code.

Since values of fields CL and CR depend on values of

fields P, MP, and D, and values of field P depend on values of

fields MP and D, then we should use special "dependent"
combinator that describes combinations of the fields that
relate to requirements from the A, B and C groups:

Depend(Product(MP, D)

 => P

 => Product(CL, CR)

)

As we mention above, we should use diagonal
combinator to combine fields that relate to requirements
from groups A and B. So, we have the following combinator
for generation of CREDITS table tuples:

combinator(CREDITS) =

 Diagonal(Depend(Product(MP, D)

 => P

 => Product(CL, CR)

)

 , E

);

Resulting test data is presented in TABLE II.

TABLE II. GENERATED TEST DATA

D MP P CL CR E

6 6 5 V A

6 6 5 U A @

6 6 6 V A

6 6 6 V B @

6 6 6 U A

6 6 6 U B @

6 6 7 V A

30 6 5 V A @

30 6 5 U A

30 6 6 V A @

30 6 6 V B

30 6 6 U A @

30 6 6 U B

30 6 18 V A @

30 6 18 V B

30 6 18 U A @

30 6 18 U B

30 6 30 V A @

30 6 30 V B

30 6 30 U A @

30 6 30 U B

30 6 31 V A @

VI. DISCUSSION

Using of a dependent combinator allow us to have a
uniform configuration of the generator instead of two (for

cases MP = D and MP <D).
Using of a dependent and diagonal combinators allow us

to reduce quantity of generated test data by more than 65%
in comparison with the general Cartesian product: We have

22 tuples while Cartesian product gives 64 tuples (3*2*2*2

= 24 for case MP = D, plus 5*2*2*2 = 40 for case

MP < D). Nevertheless, our test set has the same quality as
the Cartesian product test set (with respect to the formulated
coverage criteria).

There are two aspects that make relative reduction of
tests quantity to increase.

First, the more possible values of fields are, the more
economy we have. For instance, if we have in our example
one addition client type and one addition credit type , then

economy in our approach is 70% (3*3*3*2 + 5*3*3*2

= 144 for Cartesian product against (3 + 1*3*3 + 1)

+ (3 + 3*3*3 + 1) = 44 in our approach).
Second, the more independent aspects of behavior of the

application under test, the more economy we have. Suppose
in our example, that actual payment has a type with two
possible values ("O" – payment under the clearing settlement
and "E" – payment by cash), and the application under test
uses this type in some additional aspect of behavior (for
example, calculating some statistics). Then the quantity of
tuples in our approach does not increase (since we use
diagonal combinator), while the quantity of tuples for
Cartesian product doubles.

VII. CONCLUSION

In the paper, we propose the method of automated
generation of test data for functional testing of applications
that process huge volumes of data. The method is aimed to
cover functional branches of an application under test. The
main benefit of the method is that on the one hand it allow a
tester to achieve coverage of functionality of an application
under test, but on the other hand generated test data are more
optimal then in existing tools:

 generation process is less time-consuming, and

 test report analysis is less labor-consuming and less
time-consuming.

Generation of the data by means of Cartesian
combination of all fields provides full coverage, but resulting
test data are practically always superfluous. Redundancy
extremely grows under increasing number of combined
fields and cardinality of sets of their values, on which the
behavior of the application under test depends.

The proposed approach is based on requirements analysis
and formalization. Usage both Cartesian product
combinators, and dependent and diagonal combinators
allows a tester to reduce a test set without loss of test data
quality and to obtain test data with volume close to the
optimum.

The approach is supported by the Pinery generator of
structurally complex data.

REFERENCES

[1] http://www.natcorp.ox.ac.uk/corpus/index.xml

[2] N. Oostdijk and P. Haan, Corpus-Based Research into Language. In
honour of Jan Aarts, Amsterdam/Atlanta, GA, 1994, VII.

[3] M. L. Songini, QuickStudy: Extract, Transform and Load (ETL),
2004, Computerworld,

http://www.computerworld.com/s/article/89534/QuickStudy_ETL

[4] DTM Data Generator. http://www.sqledit.com/dg/

[5] Turbo Data. http://www.turbodata.ca/

[6] DBMonster. http://dbmonster.kernelpanic.pl/

[7] D. Chays, Y. Deng, P.G. Frankl, E.J. Weyuker, An AGENDA for
testing relational database applications, Software testing, verification
and reliability, 2004, VOL 14; PART 1, pages 17–44.

[8] C. Binnig, D. Kossmann, E. Lo, Testing database applications, 2006,
Proceedings of the 25th ACM SIGMOD international conference on
management of data / Principles of database systems, Chicago.

[9] A.V.Demakov, S.V.Zelenov, S.A.Zelenova. Pinery generator of
structurally complex data: implementation of new capabilities of
UniTESK // Proceedings of ISP RAS, Moscow, 2008, vol.14, part 1,
119–136.

[10] A.V.Demakov, S.V.Zelenov, S.A.Zelenova. Using abstract models
for the generation of test data with a complex structure. Programming
and Computer Software, 2008, vol.34, N 6, 341–350.

[11] I.B.Bourdonov, A.S.Kossatchev, V.V.Kuliamin, A.K.Petrenko.
UniTesK Test Suite Architecture. Proc. FME'2002 conference,
LNCS, 2391. Copenhagen, Denmark, 2002, 77—88.

[12] UniTESK Technology Web-site. http://www.unitesk.com/

