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Abstract—Applications for processing great volumes of data is 

a very widely used kind of software. In enterprise integration 

there are tasks of data integration. When solving these tasks, 

special tools supporting development and execution of 

applications implementing extract, transformation and load 

pattern are often used. From the point of view of functional 

testing, such applications have a specific peculiarity related to 

a huge number of combinations of input data. Existing 

approaches and tools solving the problem of test data 

generation for database application build large arrays of input 

data based on database scheme or on SQL queries of 

application under tests. To ensure covering functionality of an 

application under test using these approaches and tools, a 

brute force of all available combinations is needed. In the 

paper, we prpose a method allowing less excessive data 

generation for covering functionality of database applications. 

It allows achieving functionality coverage with acceptable 

amount of test data close to optimal one (one test per one 

functionality branch) in acceptable generation time. 

Test data generation; database applications; functional 

testing; data integration; ETL-applications testing 

I.  INTRODUCTION 

Nowadays, availability of more and more increasing 
volumes of information storages and computing resources 
for their processing is constantly growing. This yields 
prevalence of applications working with huge amount of data 
in various areas. For instance, in the early nineties of the last 
century, the British national corpus has been created. This is 
a specially marked and processed big set of printable and 
audio texts containing 100 million words for more than 
twenty years' interval [1]. Since then, such national corpora 
of many languages have appeared and continue to appear and 
develop. The corpora not only make many traditional 
problems of linguistics more trivial, but also allow to state 
and to solve previously impracticable problems primarily 
related to processing of great volumes of data [2]. Also 
problems concerned with processing of great volumes of 
data rise in such areas as statistics, sociology, geophysics, 
some sections of physics, molecular genetics, problems with 
climate, meteorology. 

Storage and processing great volumes of data is crucial 
for modern business too. Enterprise systems contain huge 
volumes of interconnected data concerning consumers and 
customers, suppliers, partners, equipment and personnel, 
financial streams, various business transactions. Huge 

volumes of data are usually stored in structured form in one 
or several databases under control of one or several DBMS. 
Often, supporting various business needs require an 
integration of several subsystems of an enterprise system or 
even connecting to some parts of external systems. In many 
such cases, a problem of access to and operating with data 
stored in different databases in various formats rises. 
Therefore, data integration applications that perform 
replication, updating and synchronization of great volumes 
of data form a widespread kind of integration applications. 

Tasks of such applications can be simple themselves but 
not always easy for implementing (for example, selection of 
data concerning some person or legal entity). The tasks can 
also be enough difficult both in conditions of 
selection/aggregation of input data and in calculation of final 
result (for example, invoicing clients according to volume of 
actual service consumption, tariff plans, and provided 
discounts). Since this kind of tasks frequently occurs when 
solving the integration problems, there are specialized 
platforms providing universal (with respect to platforms for 
data storage) environment for development and running 
integration applications that effectively solve problems of 
extraction, transformation and loading of big data [3]. 
Further we refer to such applications as ETL-applications 
(Extract, Transform and Loading). 

After development or updating of any application, one 
should check correctness of its behavior with respect to the 
functional requirements implementing the business needs. 
The business logic of ETL-applications can be detailed as 
follows: 

- extraction source data that meet corresponding 
conditions defined in requirements; 

- changing values of source data with respect to 
conditions defined in requirements; 

- transformation of input data (changing values 
and/or representation format) according to 
requirements; 

- loading into target some data that should be loaded 
according to requirements; 

- changing in the target some data that meet 
corresponding conditions defined in requirements. 

Mainly, one checks correctness of implemented behavior 
by means of functional testing. That is running the system 
under test (SUT) on specially prepared input data and 
comparing output data with expected ones. In the paper, we 
consider the problem of generating input data for functional 
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Figure 1.  Optimazation of iterating by semantics. 

 

testing of ETL-applications. Note that ETL-applications 
contain all the same steps as any database applications (data 
extraction, transformation and loading). Therefore, proposed 
method is applicable not only to ETL-applications but to 
many other database applications too. 

One can estimate quality of functional testing by 
achieved coverage of functional requirements. Ideally, all 
functional branches of the algorithm implementing required 
functionality should be covered. To perform that, one should 
provide such test data that force SUT to do the following: 

- retrieving data from the source and filtering them on 
all possible combinations of conditions specified in 
the requirements; 

- covering during data transformation all possible 
functional branches of the algorithm implementing 
the required transformation; 

- possibility to check the absence of unnecessary 
changes of source and target data; 

- processing special data (empty columns, lines of 
limited length, etc.). 

As a rule, a test is defined by some parameters. 
Obviously, all possible combinations of parameters contain 
combinations needed for covering the functionality of the 
application under test. But in real situations, when generating 
all possible combinations, the number of parameters to be 
combined causes combinatorial explosion. In this case, 
besides of unacceptable generation time and total amount of 
test, resulting test set contains many different test data values 
not distinguishable for SUT functionality. A problem of 
analyzing test results rises: the same errors may be revealed 
on thousands of different values of test data, and thus, time-
consuming analysis is required. 

Ideally, for covering functional requirements, test data 
should provide exactly one possible combination of Boolean 
expression for each functionality branch. The paper describes 
a method of generating test data with volume close to the 
optimal set. 

The rest of this paper is organized as follows. Section II 
contains some preliminaries. Section III reviews related 
work. Section IV describes proposed method. Section V 
illustrates the proposed method by example. Section VI 
discusses benefits of the proposed methods. Section VII 
concludes the paper. 

II. PRELIMINARIES 

In general, to ensure full coverage of all functional 
branches, one should use brute force combination of field 
values depending on which branching should occur when 
retrieving, when running an application under test. But it 
leads to the combinatorial explosion causing unacceptable 
cost on generation time and total volume of test data. 

Often, in terms of functionality coverage, values of 
several fields are related by some semantics, which means 
that value of one field depends on values of some other 
fields. As a rule, iterating only the combinations of values 
meeting this semantics greatly reduces the total number of 

variants. Let us consider the following example. Let fields A 

and B take integer values in the range [1 .. 30] and 

value of the field B depends on value of the field A as 
follows (see Figure 1): 

- if 1 ≤ A ≤ 10, then B = 1; 

- if 11 ≤ A ≤ 20, then 11 ≤ B ≤ 20; 

- if 21 ≤ A ≤ 30, then B = A. 
When producing not all the possible combinations of 

values of the fields, but only ones meeting the above 
conditions, the amount of derived combinations is about 8 
times reduced (from 900 to 120). 

Besides, the functionality of an application under test can 
have several independent aspects. In this case, it is possible 
to reduce the number of combinations using so-called 
diagonal combinator iterating a set of tuples S such that for 
any i (1 ≤ i ≤ n) and for any s from Si there exists a tuple 
(s1,…,sn) from S with s = si, where Si is a set of values 
iterated by i-th subiterator. This method ensures producing a 
set of test data containing every value of each field. The 
main advantage of this combination method is that the 
volume of result test data is significantly less than in the case 
of using Cartesian product, since the capacity of produced set 
equals the maximum of capacities of value sets of combining 
fields instead of product of them. 

III. TOOLS REVIEW 

Most data generation tools for DB (DTM Data Generator 
[4], Turbo Data [5], DBMonster [6]) support filling the 
database tables by a large number of syntactically correct 
data and provide the following set of features: 

- random data generation with ability to specify intervals 
of numeric types, length of string type, and data format; 

- data generation from the list of values with ability to 
specify the percentage of each list row in generated 
data set; 

- generation by selecting data from specified tables; 
- generation by selecting data from files; 
- generation of auto incremental data with specified 

initial value and step; 
- data generation from existing libraries; 
- random data generation by a mask; 
- data generation for dependent tables; 
- data generation based on external processes of 

generation specified by user procedures. 



Some tools (AGENDA [7], HTDGen [8]) support the 
generation of data not only on the basis of constraints 
defined by schema or user, but also based on SQL queries of 
database application under test. It allows generating such 
data that SQL queries of an implementation under test return 
some meaningful results. However, when generating data is 
based on an implementation, there is no guarantee of 
covering all functional branches because the implementation 
may contain wrong branches or does not implement the 
required ones. Also this approach does not allow covering all 
required functional branches of transformation and filtering. 

In order to achieve full coverage of all functional 
branches using any of mentioned above tools a tester has to 
use brute force combination of field values, depending on  
which an application under test extracts, transforms and 
filters data. 

The Pinery test generating tool developed at ISP RAS 
[9, 10] is intended to generate structurally complex test data. 
Generating data having some syntactic structure is managed 
by specifying constraints on desired data fragments in the 
terms of the structure. In particular, Pinery supports so-called 
conditional constraints that should be used if generation of 
some part of data depends on values of some other parts of 
the generated data. 

In Pinery, there are many various ways to specify 
constraints on values of fields. Some of them are: 

- enumerating a list of desired values;  
- defining a function depending on values of other 

fields;  
- specifying a set data to be belong, for example: 

- a segment of integers; 
- a set of values of another field (e.g., in the case of 

assignment of values for a foreign key). 
Another important kind of constraints is specification of 

way to combine values of fields. In particular, it is possible 
to build a hierarchy of different combinators containing 
Cartesian products, diagonal combinators and custom 
combinators based on dependences between values of 
different fields. 

These features allow a tester to customize generation 
more exactly and, as a result, to receive test data with 
volume close to optimal one. 

IV. METHOD DESCRIPTION 

The method of directed generation of test data is based 
on UniTESK [11, 12] approach to model-based testing and 
consists of the following phases. 

The first phase is requirements elicitation: analytics study 
normative documents for the system under test, identify 
input data requirements and categorize them. The result of 
the phase is a requirements catalogue that contains precisely 
formulated input data requirements, classified into several 
groups with established links between them. The catalogue is 
used on the following phases. 

The second phase is formalization of requirements. 
Elicited input data requirements get specified using 
appropriate formal notation. Such specification is called 
formal model. 

 
Figure 1.  Phases of model-based testing. 

The third phase is formulation coverage criteria: the input 
data domain divides into finite number of subsets (possibly 
intersecting each other), such that for each subset S, behavior 
of the SUT on any data from S is uniform. The starting point 
for such a division is a set of conditions from the 
requirements catalogue. Besides, the specific semantics of 
these conditions may force a tester to formulate some 
additional hypotheses on behavior of the SUT that induce a 
subdivision of the input data domain into smaller subsets. 

The fourth phase is automated tests generation from the 
formal data model with respect to the coverage criteria. In 
our approach, automated generation is carried out using the 
Pinery generator tool. Input data for Pinery are: 

- formal description of the test data model, and 
- generator configuration aimed at achieving the 

coverage criteria. 
Tests running, reports analysis, defects identification and 

corrections is beyond the scope of this article. These issues 
are not discussed here. 

V. EXAMPLE 

Let us illustrate the proposed method by the following 
example of test data generation for testing simplified bank 
credit system. 

 The normative document is the following informal 
description of the bank credit system. 

 The client of certain type registers in the system and 
receives an identifier. 

 The client gets a sum of money as a loan that should 
be repaid in few months. 

 The client should monthly repay the sum calculated 
as current debt divided by quantity of months before 
the loan termination. 

 If actually repaid sum is less than the calculated sum 
of monthly payment, then the client can be penalized. 
If actually repaid sum is greater than the calculated 
sum of monthly payment, then the client can get a 
bonus. Sizes of penalties and bonuses depend on both 
client type and credit type. 

 The client can declare to get monthly e-mail 
notifications about the state of the loan, repayments 
and penalties or bonuses. 

 At the end of each month, the application does the 
following: 

A. it reduces the debt by the sum of the client 
repayment and calculate the penalty or the bonus 
with respect to the following rules. 
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I. If the sum of client repayment is less than 
monthly payment, then: 

1. clients of the type "VIP" should not be 
penalized; 

2. clients of the type "USUAL" should be 
penalized with the sum equal to 3% of the 
overdue payment. 

II. If the sum of client repayment is not less than 
the monthly payment and not more then the 
current debt, then: 

1. clients of the type "VIP" with the loan of the 
type "B" and clients of the type "USUAL" 
with the loan of the type "A" should get 
bonuses equal to 2% of the repaid sum; 

2. clients of the type "VIP" with the loan of the 
type "A" should get bonuses equal to 5% of 
the repaid sum; 

3. clients of the type "USUAL" with the loan of 
the type "B" should get bonuses equal to 1% 
of the repaid sum. 

III. If the sum of client repayment is more than the 
current debt, then the bank personnel should be 
notified about refund. 

B. If the client has declared monthly e-mail 
notification, then the e-mail should be sent. 

At the first phase, we analyze the normative documents 
and build a requirements catalogue. In this example, the 
requirements catalogue consists of the items of the bank 
credit system behavior rules (both A with sub-items and B). 
They can be represented in the form of the diagram (see 
Figure 3). 

 
Figure 2.  Diagram of bank credit system requirements. 

TABLE I.  BEHAVIORIAL PARAMERTERS OF BANK CREDIT SYSTEM 

Short 

Name 
Full Column Name Type Description 

MP MONTH_PAYMENT NUMBER 
Sum to be pay 

monthly 

D DEBT NUMBER Total debt sum 

P REPAYMENT NUMBER 
Actually repaid 

sum 

CL CLIENT_TYPE CHAR 

Client type: 
"V" – VIP client 

"U" – USUAL 

client 

CR CREDIT_TYPE CHAR 

Credit type: 

"A" – type "A" 

"B" – type "B" 

E EMAIL STRING E-mail address 

 
At the second phase, we build the formal model of the 

requirements. 
The behavior of the application under test depends on the 

parameters presented in TABLE I. 

The constraint of data consistency is MP <= D. 
The requirements can be formalized as follows: 

A.I P < MP && CL = "V" => penalty 0; 

P < MP && CL = "U" => penalty 3%; 

A.II.1    MP <= P <= D 
&& (   CL = "V" && CR = "B" 

    || CL = "U" && CR = "A" 

   ) 

=> bonus 2%; 

A.II.2    MP <= P <= D 
&& CL = "V"  

&& CR = "A" 

=> bonus 5%; 

A.II.3    MP <= P <= D 
&& CL = "U" 

&& CR = "B" 

=> bonus 1%; 

A.III P > D => refund. 

B. E ≠ "" => notification. 
 
At the third phase, we formulate coverage criteria. 
Besides the requirement conditions, we introduce the 

following additional hypotheses about behavior of the 
application under test: 

1. If MP <= P <= D, then behavior of the application 
can differ in the following cases: 

 MP = P = D; 

 MP = P < D; 

 MP < P < D; 

 MP < P = D. 
2. If conditions of the requirement A.I hold, then 

behavior of the application can differ in the following 
cases: 

 CL = "V" && CR = "B"; 

 CL = "U" && CR = "A". 
Here we proceed with establishing rules for division the 

input data domain into subsets with uniform behavior of the 
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application. First, we formulate such rules separately for 
each parameter, and then we state how to combine these 
rules for the whole input data domain. 

Let us establish division rules for parameters MP, D, P, 

CL, and CR, that relate to requirements from the A group. 
The hypothesis 1 yields the following division of input 

data for parameters MP and D into two subsets: 

 MP = D; 

 MP < D. 
Conditions from the requirements of the A group yield 

the following division rules for parameter P. 

 If condition MP = D holds, then domain for 

parameter P divides into three subsets: 

 P < MP; 

 MP = P = D; 

 P > D. 

 If condition MP < D holds, then domain for 

parameter P divides into five subsets (taking into 
account the hypothesis 1): 

 P < MP; 

 MP = P < D; 

 MP < P < D; 

 MP < P = D; 

 P > D. 
Conditions from the requirements of the A group yield 

the following division rules of input data for parameters CL 

and CR. 

 If condition P < MP holds, then conditions from the 
requirements of the A.I group yield division into two 
subsets corresponding to all possible values of the 

parameter CL. 

 If condition MP <= P <= D holds, then conditions 
from the requirements of the A.II group and the 
hypothesis 2 yield division into four subsets 
corresponding to all possible combinations of values 

of parameters CL and CR. 

 If condition P > D holds, then the condition from 
the requirement A.III yields no division (or, formally 
speaking, division into one set). 

Next, let us establish division rules for the parameter E 
that relate to the requirement A.II. The condition from the 
requirement A.II yields division into two subsets: with empty 

and non-empty value of E. 
Next, let us state how to combine these rules for the 

whole input data domain. 
Division of input data domain related to parameters of A 

group (MP, D, P, CL, and CR) is induced by Cartesian 
product (taking into account all dependencies) of divisions 
for each of the parameters. 

Since behavior of the application under test has two 
independent aspects A and B, then division of the whole 
input data domain is induced by the diagonal combination of 
the divisions corresponding to A and B. 

At the fourth phase, we generate tests automatically using 
the Pinery generator tool. 

First, we should provide Pinery with formal description 
of DB scheme (for example, using the DDL-subset of SQL). 
Next, we should configure Pinery by constraints on data to 
be generated. These constraints are described in terms of the 
DB scheme elements. 

In our example, there is one table CREDITS with the 
following fields: MONTH_PAYMENT, DEBT, 
PAYMENT, CLIENT_TYPE, CREDIT_TYPE, EMAIL. 
Further we refer these fields by their short names. 

In this example, there are two kinds of constraints: 

 Constraint on values of one field; 

 Constraint on combination method for several fields. 
First, we describe constraints of the first kind. 

In order to cover subsets with MP = D and MP < D, we 

may put, for example, MP = 6, D = 6 and D = 30. In 
order to cover subsets with empty and non-empty E, we may 

put, for example, E = "" and E = "…@…" (some address). 
In order to configure Pinery with these values, we should 

describe the following constraints that enumerate lists of 
values for each field

1
 

MP = { 6 }; 

D = { 6, 30 }; 

E = { "", "…@…" }; 

These are examples of so-called unconditional 
constraints that specify values valid in all cases. 

However, sometimes we must not use unconditional 
constraints. For example, values of the field P depends on 

values of fields MP and D. Thus, we should use two 

conditional constraints: for the cases MP = D and MP < D. 

In order to make condition P < MP hold, we may put 

P = MP – 1. In order to make condition P > D hold, we 

may put P = D + 1. If condition MP <D holds, then in 

order to make condition MP < P <D hold, we may put 

P = (MP + D)/2. As a result, we have the following 

constraints for the field P: 
P[MP<D] = 

    {MP-1, MP, (MP+D)/2, D, D+1}; 

P[MP=D] = {MP - 1, D, D + 1}; 

Values of fields CL and CR depends on values of fields 

P, MP and D: 
CL[ P<MP ] = { "V", "U" }; 

CR[ P<MP ] = { "A" }; 

CL[ MP<=P && P<=D ] = { "V", "U" }; 

CR[ MP<=P && P<=D ] = { "A", "B" }; 

CL[ P>D ] = { "V" }; 

CR[ P>D ] = { "A" }; 
Here we proceed with description of a combinator of 

fields values for generation of CREDITS table tuples. 

In all cases, we may combine values of fields CL and CR 
using Cartesian product: 

Product( CL, CR ) 

Similarly, we may combine values of fields MP and D: 
Product( MP, D ) 

                                                           
1  In Pinery, constraints are described in XML form. In order to 

increase readability, here we describe constraints in a semi-formal pseudo-

code. 



Since values of fields CL and CR depend on values of 

fields P, MP, and D, and values of field P depend on values of 

fields MP and D, then we should use special "dependent" 
combinator that describes combinations of the fields that 
relate to requirements from the A, B and C groups: 

Depend(  Product( MP, D ) 

      => P 

      => Product( CL, CR ) 

      ) 

As we mention above, we should use diagonal 
combinator to combine fields that relate to requirements 
from groups A and B. So, we have the following combinator 
for generation of CREDITS table tuples: 

combinator( CREDITS ) = 

   Diagonal( Depend(  Product(MP, D) 

                   => P 

                   => Product(CL, CR) 

                   ) 

           , E 

           ); 

Resulting test data is presented in TABLE II. 

TABLE II.  GENERATED TEST DATA 

D MP P CL CR E 

6 6 5 V A  

6 6 5 U A @ 

6 6 6 V A  

6 6 6 V B @ 

6 6 6 U A  

6 6 6 U B @ 

6 6 7 V A  

30 6 5 V A @ 

30 6 5 U A  

30 6 6 V A @ 

30 6 6 V B  

30 6 6 U A @ 

30 6 6 U B  

30 6 18 V A @ 

30 6 18 V B  

30 6 18 U A @ 

30 6 18 U B  

30 6 30 V A @ 

30 6 30 V B  

30 6 30 U A @ 

30 6 30 U B  

30 6 31 V A @ 

 

VI. DISCUSSION 

Using of a dependent combinator allow us to have a 
uniform configuration of the generator instead of two (for 

cases MP = D and MP <D). 
Using of a dependent and diagonal combinators allow us 

to reduce quantity of generated test data by more than 65% 
in comparison with the general Cartesian product: We have 

22 tuples while Cartesian product gives 64 tuples (3*2*2*2 

= 24 for case MP = D, plus 5*2*2*2 = 40 for case   

MP < D). Nevertheless, our test set has the same quality as 
the Cartesian product test set (with respect to the formulated 
coverage criteria). 

There are two aspects that make relative reduction of 
tests quantity to increase. 

First, the more possible values of fields are, the more 
economy we have. For instance, if we have in our example 
one addition client type and one addition credit type , then 

economy in our approach is 70% (3*3*3*2 + 5*3*3*2 

= 144 for Cartesian product against (3 + 1*3*3 + 1) 

+ (3 + 3*3*3 + 1) = 44 in our approach). 
Second, the more independent aspects of behavior of the 

application under test, the more economy we have. Suppose 
in our example, that actual payment has a type with two 
possible values ("O" – payment under the clearing settlement 
and "E" – payment by cash), and the application under test 
uses this type in some additional aspect of behavior (for 
example, calculating some statistics). Then the quantity of 
tuples in our approach does not increase (since we use 
diagonal combinator), while the quantity of tuples for 
Cartesian product doubles. 

VII. CONCLUSION 

In the paper, we propose the method of automated 
generation of test data for functional testing of applications 
that process huge volumes of data. The method is aimed to 
cover functional branches of an application under test. The 
main benefit of the method is that on the one hand it allow a 
tester to achieve coverage of functionality of an application 
under test, but on the other hand generated test data are more 
optimal then in existing tools: 

 generation process is less time-consuming, and 

 test report analysis is less labor-consuming and less 
time-consuming. 

Generation of the data by means of Cartesian 
combination of all fields provides full coverage, but resulting 
test data are practically always superfluous. Redundancy 
extremely grows under increasing number of combined 
fields and cardinality of sets of their values, on which the 
behavior of the application under test depends. 

The proposed approach is based on requirements analysis 
and formalization. Usage both Cartesian product 
combinators, and dependent and diagonal combinators 
allows a tester to reduce a test set without loss of test data 
quality and to obtain test data with volume close to the 
optimum. 

The approach is supported by the Pinery generator of 
structurally complex data. 
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