
On requirements completeness analysis method

Viktoria Gingina
Institute for System Programming
at the Russian Academy of Science

Moscow, Russian Federation
e-mail: vgingina@ispras.ru

Abstract — Requirements figure prominently in
information system development. Both development
phase of the system and phase of its verification depends
on how qualitative requirements are. That is why it's
required to describe requirements as accurately and
correctly as it possible. One of the properties that define
quality of requirements collecting is completeness. The
paper shows that if one obtains sources and symptoms of
the requirements incompleteness (completeness
absence), classifies, generalizes and clarifies them then
one can check requirements for these symptoms while
collecting requirements or after that. This will
sufficiently decrease the incompleteness of the
requirements and thus improve their quality. The paper
contains some symptoms of incompleteness have already
been revealed and explains the reason of
their appearance. These symptoms have been revealed by
analyzing the documentation of some important
industrial projects.

Requirements, completeness, incompleteness, incompleteness
sources, incompleteness symptoms

I. INTRODUCTION
There is the following definition of the term

“requirement” in IEEE Standard Glossary of Software
Engineering Terminology (1990) [1]:
 (1) A condition or capability needed by a user to solve a
problem or achieve an objective.
 (2) A condition or capability that must be met or
possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed
documents.
 (3) A documented representation of a condition or
capability as in (1) or (2).

The process of developing any information system
begins with the phase of requirements collecting.
Requirements are used on numerous occasions while
developing the system. That is why there should be high
quality criteria for requirements.

Requirements are used when modeling the system.
They informs about what the system should do, what
resources it can rely on, what constraints it should conform
to and so on. Any changes and additions to the being
developed system architecture is a very hard laborious

process especially for the large divaricated one. It causes
excessive complication and probably transformation of the
architecture in a whole. Thus risks quantity is increasing and
developing time is rising. The problem is apparent
especially when interconnecting several systems: incorrect
requirements can cause their incompatibility.

Requirements are also used to verify if the developed
system corresponds to what it’s expected to be. Check-on
conformance with the requirements is used. If tests used for
the verification are not qualitative the testing process will
take longer than it was planned. To create good test testers
will have to clarify information with the help of analysts and
developers and besides the opinion of these experts could be
different in points that are incorrectly described in the
requirements. Thus the quantity of the failed tests will arise.
The results are: low-quality product, broken date of
performance, increased cost. And if there is lack of means
system development could be paused.
When using low-quality documentation risk rises.
Thus good well-stated, i.e. high-quality requirements are
needed. Such requirements should meet following criteria
[2]:

Adequacy – requirements meet customer wishes.
Unambiguity – different domain experts understand

requirements equally.
Consistency – requirements are exhaustively

formulated
Completeness – any situation has its own description

(usually general) in the requirements. This paper is devoted
to completeness achievement.

II. REQUIREMENTS COMPLETENESS

Requirement completeness criterion can be separated
into two constituent parts [2]. Complete requirements
should describe:
- firstly everything that customer wants to get of the system;

- secondly system behavior in any logically possible
situations.

The first aspect is a task for customer analyst. But in
the second aspect completeness analysis should be carried
out by the requirements completeness expert.
K. Wiegers said that completed requirements give many
priorities [3]:

- restriction of rework and redesign when developing,
- project risk decrease,
- system interoperability rise,
- more complete requirements gives fewer mistakes are
founded while testing (functional, integration, etc.)

The problem of requirements completeness is not
new and is usually considered in respect to rules of good
and accurate requirements collecting: ways to interview
customer and concerned persons, assessment of user-groups
needs, questions that analyst must answer when collecting
requirements of different type. But even if all these
recommendations are executed requirements often are not
complete. Why so?
K. Wiegers notes [3]: “Many software problems arise from
shortcomings in the ways that people gather, document,
agree on, and modify the product’s requirements. <…> the
problem areas might include informal information
gathering, implied functionality, erroneous or
uncommunicated assumptions, inadequately defined
requirements, and a casual change process”.

There are different reasons of incompleteness. One
of them is a human factor. Since requirements are
collecting by a human they just can’t be fully considered. A
commonplace example: there are no constraints for
calculation in a computing system. A person who collects
requirements (system analyst) believes that some situations
are an axiom understandable for everybody so there is no
need to describe it in detail – this is another often problem.
“System behavior is obvious, usual and do not need any
additional explanation” – that is why ambiguous and not
evident moments are often not described in requirements.
We can also single out moments of “premeditated
incompleteness”. This is a situation when customers didn’t
get an agreement or a situation when customer wants to give
carte blanche to developers or a situation when system
behavior is hard to foretell (impartial non-determinism). K.
Wiegers said in his book [4]: "Requirements are never
finished or complete. There is no way to know for certain
that you haven't overlooked some requirement, and there
will always be some requirements that the analyst won't feel
it is necessary to record".

In spite of this it is feasible to decrease requirement
incompleteness as far as it possible.

Obtaining above-mentioned incompleteness sources
gives some understanding of how to find it in requirements.
As a result of the research it’s planned to get some check-
list consists of check-questions that help to define
incompleteness. And it’s planned to get a set of patterns and
anti-patterns that describe situations able to be incomplete.
If there is “computes <…>” expression and there is no a
precision of computation in requirements this is an example
of anti-pattern in requirements description. Element of such
lists and sets is not an exact indicator of incompleteness but
it’s an indicator for a potential place of requirements where
description of system property or function is able to be
incomplete. Usage of such lists and sets will help to find

vulnerable moments in requirements and to define possible
but not described situations.

Thus there is a problem to define and to classify
possible sources of requirements incompleteness.

Attempts to reveal requirements incompleteness has
been already done by the other researches. So it was
suggested to describe system behavior in all possible
conditions and if there is requirements for situation “A” to
define what is happening in all “not A” cases [5]. Also it
was suggested to consider requirements in respect to actor
(what actor is responsible for what function), to describe all
alternative action flows and to justify any requirement [6].
Another method recommends checking if requirements are
for all system elements [7]. From the point of view of
incompleteness source obtain method such approaches are
quite one-sided. Method suggested in this paper includes
above-mentioned approaches but considers them as special
cases of incompleteness that are not enough. Obtaining
incompleteness sources allows to research the problem more
profoundly and to discover more symptoms of
incompleteness and thus to assess requirements
completeness more correctly.

III. REQUIREMENTS INCOMPLETENESS SOURCES

Technical documentation for a few industrial systems
has been analyzed. This allowed to obtain some symptoms
of requirements incompleteness. Considered systems are
developed within the framework of large project. This fact
vividly demonstrates that requirements incompleteness is
critical for implementation and is usual even for quite a
good documentation.

In our examples symptoms of incompleteness are
expressed as anti-patterns. These are situations that are
mostly frequent for the considered projects.

(1) There is a condition-element but not all flow-
branches are described.

If there is a description for successful work of some
function there should be a description for an erroneous
situation. If there is description for “then” condition there
should be a description for “else” (“otherwise”). Similarly if
there is function description for a set of parameter values
there should be a description for any other possible values.
E.g. if it’s settled that there is some action flow for positive
values of real-type parameter then it doesn’t mean that
nothing happen for zero and negative values of this
parameter. Probably author of the requirements has such a
behavior in his mind but in that case he should explain and
describe it clearly. Otherwise we have incompleteness in the
requirements.

So in the LSB specification [8] there was not a
description for g_date_clamp function [9] behavior in a case
when “date” parameter value was in range between
"min_date" and "max_date" parameters. In the same
specification there was g_main_context_iteration function
[10] description only for the situation when "may_block"

parameter was "TRUE". Situation with "FALSE" value has
been omitted.

Special cases of such incompleteness are function
requirements that have no description for 0 or NULL values
of function parameters. Also there should be clear
description for float parameters in the case of Nan and Inf
values.

For example in the documentation for a huge
industry system S critical defects have been found: a
behavior of system interface functions was not described for
the case when these functions got faulty incoming data (0 or
NULL) instead of file pointer. In SUS 3.0 [11] in the
description of ualarm() function [12] there was not
requirement for the function behavior when “useconds”
parameter is 0.

(2) Changing the data is described in one action
branch but there is no any description for the same data in
the other branch.

Probably it doesn’t change but the absence of the
clear description indicates incompleteness. Some parameter,
object pointer, picture on a web-form, content of a file,
everything function can affects on - that is what we consider
as data in this situation. Values of all these elements form
system state. Complete requirements should describe how
every function influences to these data elements in all action
flows (or there should be a clear instruction that nothing is
changed). Furthermore it’s required to note an indirect
influence of the sub-functions.

In the above-mentioned system S interface there is a
parameter ERROR_ID that gets an identifier of the error
took place when using the function. But earlier there were
not instructions for correct function processing. An
assumption that value was not changed founded to be
wrong. In reality the parameter got a “noerror” value.

(3) A new function, type, object, term is used but
never described.

For the first view such an omission can look absurd
but it quite often occurs. In well-formulated requirements
you can suddenly find a link to some function, parameter,
data element that is described or explained nowhere in the
documentation. For example in the LSB specification [13]
in the svcudp_create() function [14] description it was noted
that this function was called similarly to
svcudp_bufcreate(sock, SZ, SZ) function call. But
svcudp_bufcreate() function was never described in the
specification. The reason of this incompleteness can be the
uncoordinated documentation writing and changing. An
ordinary misprint can take place too. And there is a
possibility that the function just has been forgotten to
describe. Obviously such an error is peculiar to divaricated
systems because for a requirements writer it’s more difficult
to imagine complex system in a whole. If there are more
than one writer the problem will be interconnection between
them.

IV. SOURCES OF ANALYZED DOCUMENTATION

Data analyzed to find incompleteness symptoms is
documentation on three industrial systems.

Examples of the defects found in Linux
specifications requirements got from the official information
of Verification Center of the Operating System Linux [15].
The Center is based at the Institute for System Programming
of the Russian Academy of Sciences (ISP RAS) [16]. It
integrates a group of projects of developing open source
tests and automated verification techniques for Linux-
systems. The Center is supported by the Russian Federal
Agency [17] for Science and Innovations, by the
international consortium The Linux Foundation [18].

Linux Verification Center works on checking that
Linux implementations are conform to requirements and
specifications. There is information of testing results and
found inequalities on Center site. There are many problem
reports marked as “incompleteness” among them. As
LinuxTesting.org documentation is officially published on
their Internet page there is a possibility to show
incompleteness symptoms using some real examples of the
project.

Other two projects are commercial, closed and do not
publish such an information. Internal documents being used
for analysis are test-cases and defects reports registered in
bug-tracking system in one case and test report documents
in the other case.

V. CONCLUSION

This paper is devoted to a necessity of qualitative
description of the system requirements. The paper discloses
an importance of the requirements incompleteness and
shows its critical influence. Some incompleteness symptoms
are obtained and obvious examples of incompleteness
demonstration are provided for the huge industrial systems.
Obtaining incompleteness symptoms allows improving the
project documentation that will give an opportunity to avoid
problems when implementing and testing system. It’s
planned to continue documentation analysis for different
projects to find and classify other incompleteness sources
and to get check-lists, patterns and anti-patterns sets. Also
it’s planned to examine possibility of incompleteness
sources obtain by formalization of requirements collecting
process, by requirement modeling, by specification of
verification tests and by analyzing results of static and
dynamic implementation analysis.

REFERENCES
[1] http://standards.ieee.org/reading/ieee/std_public/description/se/610.12

-1990_desc.html
[2] V.Kuliamin, N.Pakulin, O.Petrenko, A.Sortov, A.Khoroshilov,

Requirements formalization on practice, Preprint 13, ISP RAS,
Moscow, 2006 (in Russian)

[3] K.Wiegers, Software Requirements: Practical Techniques for
Gathering and Managing Requirements Throughout the Product
Development Cycle, 2nd edition, Microsoft Press, Redmond, Wash.,
2003

[4] K. Wiegers, More About Software Requirements: Thorny Issues and
Practical Advice, Microsoft Press, Redmond, Wash., 2006

[5] R. S. Carson, Requirements Completeness: A Deterministic
Approach, http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.8.735

[6] A. Sarkar, Requirement Management in Testing, Infosys
Technologies Limited, Bangalore, unpublished

[7] S. Robertson, J. Robertson, “Mastering the Requirements Process
Second Edition”, Addison Wesley Professional, 2006

[8] Linux Standard Base Desktop Specification 3.1, Chapter 12.
Libraries, 12.2 Interfaces for libglib-2.

[9] http://www.gtk.org/api/2.6/glib/glib-Date-and-Time-
Functions.html#g-date-clamp

[10] http://www.gtk.org/api/2.6/glib/glib-The-Main-Event-Loop.html#g-
main-context-iteration

[11] The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004
Edition (SUS 3.0), System Interfaces

[12] http://www.opengroup.org/onlinepubs/000095399
[13] Linux Standard Base Core Specification 3.1, Chapter 13. Base

Libraries, 13.5. Interface Definitions for libc
[14] http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-

Core-generic/baselib-svcudp-create-3.html
[15] http://linuxtesting.ru
[16] http://www.ispras.ru
[17] http://www.fasi.gov.ru
[18] http://www.linuxfoundation.org

	I. Introduction
	II. Requirements completeness
	III. Requirements incompleteness sources
	IV. Sources of analyzed documentation
	V. Conclusion

