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Abstract — In this paper we describe an approach to 
automated test programs generation intended for 
microprocessor verification. The approach is based on formal 
specification of microprocessor ISA and description of pipeline 
hazards templates. The use of formal specifications allows 
automating development of test program generators and 
systematizing control logic verification. Since the approach is 
underlain by high-level descriptions, all specifications and 
templates developed, as well as the constructed test programs, 
can be easily reused when the processor’s microarchitecture 
changes. It makes it possible to apply the methodology in early 
stages of a microprocessor development cycle when the design 
is frequently modified.1 

I. INTRODUCTION 
Functioning of a modern pipelined microprocessor is 
implemented in a very difficult way. Pipeline can 
concurrently process multiple instructions, which, in 
addition, can interact each other via shared resources. At 
every cycle of execution a microprocessor makes lots of 
decisions on hazards resolution, branches processing, 
exceptions handling, and so on. The microprocessor 
mechanisms responsible for controlling instructions 
execution are called control logic. 

Control logic is a key component of a microprocessor; 
that is why it should be designed and verified thoroughly, not 
missing any detail. However, the common practice is to 
produce tests manually or using random generation 
techniques, which is obviously inefficient and unsystematic. 
The other kinds of methods are based on cycle-accurate 
models. Such approaches are aimed at detailed verification of 
control logic, but the problem is that accurate models are 
very hard to develop and maintain. 

The approach suggested in this work is thought to be 
somewhere between random generation techniques and 
techniques based on cycle-accurate models. The approach 
uses formal specification (modeling) of a microprocessor 
instruction set (ISA, Instruction Set Architecture). Of course, 
instruction-level models are less informative in comparison 
with cycle-accurate ones, but they have a number of practical 
advantages. First, they are much easier to develop, and 
second, they can be reused even if the microarchitecture is 
considerably altered. 
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The rest of the paper is organized as follows. Section II is 
a survey of the related work. Section III introduces the main 
concepts of the suggested approach. The description of the 
approach is given in Section IV. Section V considers a case 
study. Finally, Section VI concludes the paper. 

II. RELATED WORK 
In the paper [1] two mutually complementary techniques are 
described. The first one is a test generation technique basing 
on model checking, while the second one uses template-
based procedures. Source information for the both 
approaches is a microprocessor specification written in 
EXPRESSION [2]. Basing on the specification, a generic 
structure-behavior model in SMV [3] is automatically 
derived. For this model, a test developer defines a fault 
model. For each element of the fault model the negation of 
the corresponding property is produced. Then, a counter-
example is generated using the SMV model checker. As the 
authors say, model checking does not scale on complex 
designs. So, the technique employing templates is used as an 
addition.  

Templates are developed by hands and describe 
sequences of instructions that create special situations in 
microprocessor behavior (in the first place, pipeline hazards). 
Generation is performed with the help of the graph model 
extracted from the specification. The template-based 
technique requires greater efforts, but it scales well. It should 
be noticed that both approaches are based on rather accurate 
specifications, and it is better to apply them in late design 
stages, when the microarchitecture is stable. Otherwise, there 
would be a need to modify the specification to keep up its 
consistency. 

In the approach [4], pipeline structure is formally 
specified in the form of state machine, which is called OSM 
(Operation State Machine). OSM describes control logic at 
two levels, called operational and hardware levels. At the 
first level, “movement” of instructions through the pipeline 
stages is described (every operation is described by a 
separate state machine). At the second level, hardware 
resources are modeled using so-called token managers. An 
operation state machine changes states by capturing and 
moving tokens. A pipeline model is defined as a composition 
of operation state machines and resource state machines. The 
goal of testing is to traverse all the transitions of the joint 



automaton. Like the previous techniques, this approach is 
based on accurate specifications. 

The paper [5] considers the test program generation tool 
Genesys-Pro (IBM Research). A generator is composed of 
two main components, an engine (which does not depend on 
target architecture) and a model (which describes 
microprocessor-specific knowledge). A verification engineer 
develops templates, which specify structure of test programs 
and properties they should satisfy. Genesys-Pro transforms 
each template into a set of constraints and builds a test 
program using constraint solving techniques. The tool is 
quite universal and applicable to different microprocessor 
architectures. However, so far as development of test 
templates is done by hand, tests maintenance is hard enough. 

In the paper [6] a technique for test generation basing on 
FSM traversal is described. In one of the stages the technique 
uses Genesys (the previous version of Genesys-Pro). A test 
developer creates a microprocessor model using the SMV 
language. After this, a set of paths covering all the edges of 
the state graph extracted from the model is built. Each path 
(so-called abstract test) is translated into a Genesys template. 
The technique allows achieving good coverage of control 
logic, but it has two principal shortcomings. First, one needs 
a skilled expert to develop a microprocessor model. Second, 
to be able to map abstract tests into Genesys templates, a 
complex description has to be done. 

Summing up, all the techniques reviewed can be divided 
into two classes: techniques based on accurate 
models [1,4,6] and techniques based on templates [5]. The 
techniques of the first class allow achieving high quality of 
verification. However, it is not practical to use them in early 
design stages. Template-based techniques do not have this 
shortcoming, but they are unsystematic and cannot guarantee 
high quality of verification. 

III. FOUNDATIONS OF THE SUGGESTED APPROACH 
The suggested approach is based on combinatorial model-
based generation [7]. It uses formal specifications of 
microprocessor ISA, which describe instructions regardless 
of their processing on a pipeline. Description of each 
instruction includes a mnemonic, list of operands, 
precondition, latency, and semantics in the imperative form. 
Besides instructions, test situations and dependencies 
between instructions are formally described. Test programs 
are generated automatically by combining test situations and 
dependencies for finite sequences of instructions. 

A. Structure of a Test Program 
Test program is a sequence of test cases. The key part of a 
test case is a test action, which is a specially prepared 
sequence of instructions intended to create a certain situation 
in microprocessor behavior (hazard, exception, and so on). A 
test action is prepared by initializing instructions and 
followed by a test oracle (sequence of instructions that 
checks correctness of a microprocessor state after execution 
of the test action). Thus structure of a test program can be 
described by the expression: 

Test = {〈Prei, Actioni, Posti〉}i=0,n-1, 

where Prei is the initializing instructions of the ith test case, 
Actioni  is the test action, and Posti is the test oracle. In 
elementary case a test program consists of a singular test 
case without a test oracle (Test = 〈Pre, Action〉). 

The assembler code below is a test program fragment that 
contains one test case (we use MIPS ISA [8] to illustrate 
ideas of the approach). 

// Initialization of sub[0]: IntegerOverflow=true 
// s5[rs]=0xffffffffc1c998db, v0[rt]=0x7def4297 
lui s5, 0xc1c9 
ori s5, s5, 0x98db 
lui v0, 0x7def 
ori v0, v0, 0x4297 
 
// Initialization of add[1]: Exception=false 
// a0[rs]=0x1d922e27, a1[rt]=0x32bd66d5 
... 
// Initialization of div[2]: DivisionByZero=true 
// a2[rs]=0x48f, a1[rt]=0x0 
... 
 
// Dependencies: div[2].rt[1]-sub[0].rd[0] 
 
// Test action: 2010 
sub a1, s5, v0 // IntegerOverflow=true 
add t7, a0, s3 // Exception=false 
div a2, a1     // DivisionByZero=true 

 
In this fragment, Action is represented as a sequence of 

three instructions: sub, add and div. There is a register 
dependency between the rt operand of the div instruction 
and the rd operand of the sub instruction. This dependency 
implies using the same register for each of the operands. 
Initializing instructions Pre load values into the independent 
input registers of all instructions of the test action (see 
preparation of the instruction sub, for example). Post is 
empty here. 

B. Test Templates 
Test template is an abstract representation of a test action 
where constraints (test situations and dependencies) are 
specified instead of concrete instructions and their operands’ 
values. Generally speaking, each template defines a testing 
purpose (situation that should be tested). The goal of test 
program generation is to construct a representative set of test 
templates. One of the possible templates for the example 
above is shown below.  

IADDInstruction R, ?, ? @ IntegerOverflow=true 
IADDInstruction ?, ?, ? @ Exception=false 
IDIVInstruction ?, R    @ DivisionByZero=true 

The template is composed of three instructions. The first 
two instructions belong to the equivalence class 
IADDInstruction, while the third one belongs to 
IDIVInstruction. For the first instruction the situation 
IntegerOverflow=true is given (instruction should 
throw the integer overflow exception). The situation of the 
second instruction is Exception=false (absence of 
exceptions). The third instruction should raise division by 
zero (DivisionByZero=true). In addition, there is a 
dependency between the first and the third instructions (the 
first register of the first instruction is equal to the second 
register of the third instruction). Independent operands of the 
instructions, i.e., operands that are not revolved by the 
dependency are denoted as ?. 



Test templates are allowed to be parameterized. The 
example below demonstrates a template with four 
parameters: $FirstInstruction (equivalence class of 
the first instruction), $Situation (test situation of the first 
instruction), $ThirdInstruction (equivalence class of 
the third instruction), and $Dependency (dependency of 
the third instruction on the first and the second instructions). 

$FirstInstruction @ $Situation 
IADDInstruction   @ IntegerOverflow=false 
$ThirdInstruction @ $Dependency 

C. Test Situations 
Speaking about control logic verification, test situations 
related to execution of instructions on a pipeline are of 
interest. As a rule, processing of an instruction is performed 
in the same way for all values of the operands (of course, if 
exceptions are not taken into account). Thereby, for an 
instruction that can raise N exceptions, N+1 test situations 
are usually defined: Exception=false, Exception0=true, …, 
ExceptionN-1=true. For an instruction which handling 
depends on the operands values one should specify all 
possible paths of its execution. 

Branch instructions are examined in a particular way. A 
test situation of a branch instruction includes a target address 
and truth values of the condition (if the branch instruction is 
conditional). In general case, a test situation is as follows: 
Target=Label, Trace={C0, …, CM-1}, where Label is a target 
label (address) and Ci is a truth value of the branch condition 
for the ith time of the instruction execution.  

D. Dependencies between Instructions 
Dependencies between instructions are thought to have a key 
role in creation of pipeline hazards. There are two main types 
of dependencies: register dependencies and address  
dependencies (data dependencies). Register dependencies 
are expressed as equality of registers being used as operands 
of two instructions. Such dependencies can be of the 
following types: 

• read-read — both instructions read from the same 
register; 

• read-write — the first instruction reads from a 
register, while the second one writes into it; 

• write-read — the first instruction writes into a 
register, while the second one reads from it; 

• write-write — both instructions write into the same 
register. 

Address dependencies have more complex structure and 
are related to internal organization of memory management 
units [9]. Some examples of the address dependencies are 
itemized below. 

• VAEqual — equality of virtual addresses; 
• TLBEqual — equality of TLB entries; 
• PAEqual — equality of physical addresses; 
• CacheRowEqual — equality of cache rows. 

IV. THE SUGGESTED APPROACH 
Basing on documentation analysis, a verification engineer 
marks out situations “interesting” from the control logic 
point of view (different types of pipeline hazards). For each 
hazard type its generalized specification is developed, which 
is a parameterized template creating the corresponding 
hazard situation. Such templates are also called pipeline 
hazards templates or basic templates. Basic templates are 
usually of a small size, because hazards between instructions 
occur if instructions are close to each other. To be able to 
generate tests, one should define iterators of templates’ 
parameters. After this, a generator constructs test programs 
using different values of the parameters and combining 
templates together. 

A. Specification of Hazards 
Let us examine a general scheme of pipeline hazards 
specification. All of the situations derived from the 
documentation are classified by their types (see Fig. 1). The 
four main types are exceptions, data hazards, structural 
hazards, and control hazards. 

Pipeline Hazard 
Situations 

Exceptions Data Hazards Structural 
Hazards 

Control  
Hazards 

 
 

Exception 
IntegerOverflow

 
 

ALU Hazards 

 
 

GPR Registers 
Hazards 

 
 

Incorrect 
Prediction 

 
Figure 1.  Classification of pipeline hazard situations 

Generally, all situations of the same type are described 
by one basic template. The difference between two single-
type specifications is connected with various constraints for 
template parameters – parameters domain is divided by a 
verification engineer into a number of equivalence classes, 
and this serves as a basis for the further construction of 
iterators (see Fig. 2). 

Specification of a Hazard Situation 

Constraints for Parameter $P1 

Constraints for Parameter $PK 

Pipeline Hazard 
Template 

…

 
Figure 2.  Specification of a hazard situation 

1) Specification of Exceptions 

Exception is a special event that signals that something goes 
wrong during instruction execution. When an exception is 
raised, control flow is switched to a special routine, called 
exception handler, and all the instructions loaded after the 
instruction throwing the exception are flushed. The typical 
errors related to exception handling are incorrect setting of 
an exception signal (incorrect calculation of an exception 
condition) and incorrect flushing of loaded instructions. 

There are two main strategies for exception handling in 
test programs. First, if an exception is raised, execution is 
switched to the next instruction of the test action. Second, 
execution is switched to the test oracle passing the rest 



instructions of the test action. To check pipeline flushing 
mechanisms, the second strategy is preferable. Generalized 
specification of an exception is given by the template below. 

$PreInstructions 
$ExceptionInstruction @ $ExceptionType 
$PostInstructions 

The template uses the following parameters: 
• $PreInstructions — a sequence of instructions that precedes 

an exception (pre-instructions should not raise exceptions); 
• $ExceptionInstruction — an instruction that raises an 

exception; 
• $ExceptionType — an exception type; 
• $PostInstructions — a sequence of instructions that 

succeeds an exception (post-instructions should be flushed). 

Here is an example of a concrete test action that 
corresponds to the template given. 

dadd   r25, r30, r7 
lb     r22, 0(r4) // TLBInvalid=true 
daddiu r5,  r18, 13457 

The sequence $PreInstructions consists of the 
only instruction dadd. $ExceptionInstruction is 
instantiated by the instruction lb that raises the exception 
TLBInvalid ($ExceptionType). The sequence 
$PostInstructions includes the only instruction 
addiu. 

2) Specification of Data Hazards 

Data hazards are situations in which different instructions 
try to access the same data and at least one instruction tries to 
write them. Thereby, to describe data hazards, one should 
use “read-write”, “write-read”, and “write-write” types of 
dependencies. The typical error related to data hazard 
resolution is incorrect implementation of pipeline interlocks 
resulting in data flow integrity violation. Generalized 
specification of a data hazard is given by the template below. 

$PreInstructions 
$FirstInstruction 
$InnerInstructions 
$SecondInstruction @ $Dependency 
$PostInstructions 

The template uses the following parameters: 
• $PreInstructions — a sequence of instructions that precedes a 

dependency (pre-instructions should not raise exceptions); 
• $FirstInstruction and $SecondInstruction — a pair of 

dependent instructions that causes a data hazard; 
• $Dependency — a dependency between instructions that causes a 

data hazard; 
• $InnerInstructions — a sequence of instructions between 

dependent instructions (inner-instructions should not raise exceptions 
and produce hazards); 

• $PostInstructions — a sequence of instructions that succeeds a 
data hazard (post-instructions are usually suspended with the 
dependent instruction). 

Here is an example of a concrete test action that 
corresponds to the template given. 

madd.s   $f18, $f6,  $f28, $f10 
add.s    $f8,  $f17, $f3 
ceil.l.s $f2,  $f18  // Data hazard 
div.s    $f23, $f13, $f24 

3) Specification of Structural Hazards 

Structural hazards occur when several instructions try to 
access the same unit of a microprocessor (or some other 
resource). Usually, such kinds of hazards happen when two 
similar multi-cycle instructions are located closely to each 
other. In some cases an additional data dependency is 
required to create a structural hazard between instructions. 
The typical error related to structural hazard resolution is the 
same as for data hazards (incorrect implementation of 
pipeline interlocks). Generalized specification of a structural 
hazard is absolutely the same. A concrete example is given 
below. 

div.s $f11, $f27, $f3 
add.s $f28, $f7,  $f30 
div.d $f23, $f1,  $f20 // Structural hazard 
add.d $f18, $f2,  $f25 

4) Specification of Control Hazards 

Control hazards are related to branch instructions. 
Depending on microprocessor organization, execution of a 
branch instruction can result in pipeline stalling or flushing. 
Errors of control hazard resolution relate to pipeline 
interlocks, branch prediction and other control logic 
mechanisms. Generalized specification of a control is given 
by the template below. 

$PreInstructions 
$BranchInstruction @ $Target, $Trace 
$DelaySlots 
$PostInstructions 

The template uses the following parameters: 
• $PreInstructions — a sequence of instructions that precedes 

a branch instruction; 
• $BranchInstruction — a branch instruction; 
• $Target — a target address of a branch instruction; 
• $Trace — an execution trace of a branch execution (sequence of 

truth values of a branch condition); 
• $DelaySlots — instructions in delay slots; 
• $PostInstructions — a sequence of instructions that 

succeeds a branch instruction. 

Here is an example of a concrete test action that 
corresponds to the template given. 

L:addi r1, r1,  1 
  beq  r1, r0,  L // Target=L, Trace={1, 0} 
  dadd r7, r12, r23 

B. Test Programs Generation 

Let us consider how test programs are generated on the base 
of test templates. Test actions are divided into two types: 
simple test actions (which correspond to a single basic 
template) and composite test actions (which are constructed 
by composition of several basic templates). 

1) Constructing Simple Test Actions 

Simple test actions are targeted at creation of one hazard 
situation. A technique for their construction is easy and 
based on using basic templates and iterators. For each 
situation derived from documentation, a set of test actions is 
built. Test actions are constructed by iterating parameters 



values and combining them to each other (commonly, all 
possible combinations are used) (see Fig. 3). 

Generation of Simple Test Actions 

Iterator for Parameter $P1 

Iterator for Parameter $PK 

Pipeline Hazard 
Template 

…

 
Figure 3.  Generation of simple test actions for a pipeline hazard 
 

Let us examine simple test action construction for a 
structural hazard on FPU (Floating Point Unit) being 
described by the following basic template: 

$PreInstructions 
$FirstInstruction 
$InnerInstructions 
$SecondInstruction @ $Dependency 
$PostInstructions 

Some constraints on parameters values are defined for 
this hazard. For example, the hazard occurs only between 
instructions being executed more than one cycle. It is also 
obvious that size of $InnerInstructions should not 
exceed latency of $FirstInstruction subtracted by 
two. In addition, equivalence classes of dependent 
instructions can be given. Assume that the template’s 
parameters are setup with the following values.  

FMULInstruction    : {mul.s, mul.d} 
FDIVInstruction    : {div.s, div.d} 
IADDInstruction    : {add, sub} 
 
$PreInstructions   : {} 
$FirstInstruction  : FMULInstruction, FDIVInstruction 
$SecondInstruction : FMULInstruction, FDIVInstruction 
$Dependency        : class($FirstInstruction) == 
                     class($SecondInstruction) 
$InnerInstruction  : {IADDInstruction} 
$PostInstructions  : {} 

Given the parameters values, two test actions are 
generated: 

$PreInstructions     →    
$FirstInstruction    →   mul.d $f12, $f3,  $f21    
$InnerInstructions   →   sub   r6,   r15,  r3 
$SecondInstruction   →   mul.s $f9,  $f23, $f7 
$PostInstructions    → 
 
$PreInstructions     → 
$FirstInstruction    →   div.s $f18, $f28, $f4 
$InnerInstructions   →   add   r25,  r13,  r27 
$SecondInstruction   →   div.s $f5,  $f12, $f10 
$PostInstructions    → 

2) Constructing Composite Test Actions 

The aim of composite test actions as opposed to simple test 
actions is creation of several “simultaneous” pipeline 
hazards. Composite actions allow testing complex situations 
in microprocessor behavior (parallel hazards, nested 
hazards, parallel exceptions, and so on). Construction of 
composite actions is performed by composition of several 
basic templates. 

Let T be a template of an arbitrary type, TE be a template 
of an exception, TH be a template of a data or structural 

hazard, and, finally, TC be a control hazard template. The 
main composition operations are given below. 

a) Overlapping: T=TH1|TH2 
TH.PreInstructions = TH1.PreInstructions ≡ TH2.PreInstructions 
TH.FirstInstruction = TH1.FirstInstruction ≡ TH2.FirstInstruction 
TH.SecondInstruction = TH1.SecondInstruction ≡ TH2.SecondInstruction 
TH.Dependency = TH1.Dependency & TH2.Dependency 
TH.InnerInstructions = TH1.InnerInstructions ≡ TH2.InnerInstructions 
TH.PostInstructions = TH1.PostInstructions ≡ TH2.PostInstructions 

b) Shift: TH=TH1↓TH2 
TH.PreInstructions = TH1.PreInstructions 
TH.FirstInstruction = TH1.FirstInstruction 
TH.SecondInstruction = TH1.SecondInstruction 
TH.Dependency = TH1.Dependency & TH2.Dependency 
TH.InnerInstructions = {TH1.InnerInstructions, TH2.FirstInstruction, TH2.InnerInstructions} 
TH.PostInstructions = {TH1.PostInstructions, TH2.SecondInstruction, TH2.PostInstructions} 
TH1.PostInstructions ≡ TH2.PreInstructions 

c) Concatenation: T=T1→T2 
T.PreInstructions = T1.PreInstructions 
T.MainParameters = T1.MainParameters2 
T.PostInstructions = T2 
Тype of a template T matches with the type of a template T1 

d) Nesting: TH=TH1[T] 
TH.FirstInstruction = TH1.FirstInstruction 
TH.SecondInstruction = TH1.SecondInstruction 
TH.Dependency = TH1.Dependency 
TH.PreInstructions = TH1.PreInstructions 
TH.InnerInstructions = T 
TH.PostInstructions = TH1.PostInstructions 

To clearify the semantics of composite templates, let us 
consider an example where the overlapping is used to 
compose a data hazard and a structural hazard: 
$PreInstructions1,2             → add.s  $f28, $f7,  $f30 
$FirstInstruction1,2            → div.s  $f11, $f27, $f3 
$InnerInstructions1,2           → dsub   r25,  r30,  r7 
$SecondInstruction1,2 
  @ $Dependency1 & $Dependency2 → div.d  $f23, $f11, $f20 
$PostInstruction1,2             → lb     r22,  0(r4) 

It is intuitively obvious how to iterate test actions for a 
given composite test template. Some parameters of different 
basic test templates are identified. After this, iterators are 
specified for resultant parameters (commonly, iterators 
developed for simple templates are used). Generation of 
composite test templates is perform by enumeration of 
different syntactical structures consisting of a small number 
of basic templates connection by composition operations. 

V. CASE STUDY 
The suggested approach was applied to verification of 
control logic of two arithmetical coprocessors, floating point 
coprocessor (CP1) and complex arithmetic coprocessor 
(CP2). Coprocessors have common control flow with CPU 
and use three execution channels (functional pipelines): 

• channel of floating point arithmetic; 
                                                           

2 MainParameters is set of template parameters excluding PreInstructions 
and PostInstructions. 



• channel of RAM operations; 
• channel of on-chip memory operations. 

The control logic supports solving of different types of 
hazards. In both coprocessors memory exceptions can occur. 
In addition, in CP1 arithmetic exceptions can be raised. The 
CPU implements static branch prediction and speculative 
execution mechanisms. 

The test actions were composed of four instructions of 
different types. Structure of the test situations and 
dependencies was very much the same as it is described in 
the paper, but some particular features of the 
microarchitecture were taken into account and additional 
data dependencies were included. 

TABLE I.  CASE STUDY INFORMATION 

CPU 
revision 

Code volume 
(LOC) 

Number of 
instructions 

Affected 
instructions 

Affected code 
(LOC) 

Coprocessor CP1 
8 28500 113 — — 
20 28650 114 94 485 (1.7%) 
Coprocessor CP2 
8 4950 15 — — 
20 11550 59 5 45 (0.9%) 
29 14350 100 18 165 (1.4%) 

 
Table I shows code volume (including ISA specifications 

and pipeline hazards templates), number of implemented 
instructions, number of instructions affected by the revision 
and volume of the affected code. As it is seen in the table, 
when the microprocessor is modified, a small part of the 
generated code has to be changed. It took us less than half an 
hour to alter the code. 

The generated test programs detected a considerable 
number of errors in both coprocessors which had not been 
found by randomly generated test programs. 

 

VI. CONCLUSION 
Verification of a pipeline microprocessor is a very difficult 
task that cannot be carried out without using automation 
techniques. In the paper the technique for automated test 
programs generation is described. As opposed to the 
common approaches, like manual development and random 
generation, the suggested methodology has a high level of 
automation and allows systematically testing control logic of 
a microprocessor. At the same time, the methodology differs 
from the approaches that use accurate models by the 
possibility of using it in early design stages when 
microarchitecture is frequently revised. 

Using accurate models of control logic is reasonable in 
late stages of a microprocessor design cycle when control 
logic is stable. Due to the high informativeness of accurate 
models, such approaches allow finding errors which are 
really hard to detect. Moreover, accurate models make it 
possible to create more compact set of tests. In the future we 
are planning to extend the approach to support accurate 
models as well. This would make the generator to be more 
flexible – it would be applicable to both early and late design 
stages unifying the verification process. 
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