
An Approach to Test Programs Generation for Microprocessors Based on
Pipeline Hazards Templates

Alexander Kamkin, Dmitry Vorobyev
Institute for System Programming of the Russian Academy of Sciences

25, A.Solzhenitsyn Street, Moscow, 109004, Russia
E-Mail: {kamkin, vorobyev}@ispras.ru

Abstract — In this paper we describe an approach to
automated test programs generation intended for
microprocessor verification. The approach is based on formal
specification of microprocessor ISA and description of pipeline
hazards templates. The use of formal specifications allows
automating development of test program generators and
systematizing control logic verification. Since the approach is
underlain by high-level descriptions, all specifications and
templates developed, as well as the constructed test programs,
can be easily reused when the processor’s microarchitecture
changes. It makes it possible to apply the methodology in early
stages of a microprocessor development cycle when the design
is frequently modified.1

I. INTRODUCTION
Functioning of a modern pipelined microprocessor is
implemented in a very difficult way. Pipeline can
concurrently process multiple instructions, which, in
addition, can interact each other via shared resources. At
every cycle of execution a microprocessor makes lots of
decisions on hazards resolution, branches processing,
exceptions handling, and so on. The microprocessor
mechanisms responsible for controlling instructions
execution are called control logic.

Control logic is a key component of a microprocessor;
that is why it should be designed and verified thoroughly, not
missing any detail. However, the common practice is to
produce tests manually or using random generation
techniques, which is obviously inefficient and unsystematic.
The other kinds of methods are based on cycle-accurate
models. Such approaches are aimed at detailed verification of
control logic, but the problem is that accurate models are
very hard to develop and maintain.

The approach suggested in this work is thought to be
somewhere between random generation techniques and
techniques based on cycle-accurate models. The approach
uses formal specification (modeling) of a microprocessor
instruction set (ISA, Instruction Set Architecture). Of course,
instruction-level models are less informative in comparison
with cycle-accurate ones, but they have a number of practical
advantages. First, they are much easier to develop, and
second, they can be reused even if the microarchitecture is
considerably altered.

This work was supported by the RFBR (grant 08-01-00889-а).

The rest of the paper is organized as follows. Section II is
a survey of the related work. Section III introduces the main
concepts of the suggested approach. The description of the
approach is given in Section IV. Section V considers a case
study. Finally, Section VI concludes the paper.

II. RELATED WORK
In the paper [1] two mutually complementary techniques are
described. The first one is a test generation technique basing
on model checking, while the second one uses template-
based procedures. Source information for the both
approaches is a microprocessor specification written in
EXPRESSION [2]. Basing on the specification, a generic
structure-behavior model in SMV [3] is automatically
derived. For this model, a test developer defines a fault
model. For each element of the fault model the negation of
the corresponding property is produced. Then, a counter-
example is generated using the SMV model checker. As the
authors say, model checking does not scale on complex
designs. So, the technique employing templates is used as an
addition.

Templates are developed by hands and describe
sequences of instructions that create special situations in
microprocessor behavior (in the first place, pipeline hazards).
Generation is performed with the help of the graph model
extracted from the specification. The template-based
technique requires greater efforts, but it scales well. It should
be noticed that both approaches are based on rather accurate
specifications, and it is better to apply them in late design
stages, when the microarchitecture is stable. Otherwise, there
would be a need to modify the specification to keep up its
consistency.

In the approach [4], pipeline structure is formally
specified in the form of state machine, which is called OSM
(Operation State Machine). OSM describes control logic at
two levels, called operational and hardware levels. At the
first level, “movement” of instructions through the pipeline
stages is described (every operation is described by a
separate state machine). At the second level, hardware
resources are modeled using so-called token managers. An
operation state machine changes states by capturing and
moving tokens. A pipeline model is defined as a composition
of operation state machines and resource state machines. The
goal of testing is to traverse all the transitions of the joint

automaton. Like the previous techniques, this approach is
based on accurate specifications.

The paper [5] considers the test program generation tool
Genesys-Pro (IBM Research). A generator is composed of
two main components, an engine (which does not depend on
target architecture) and a model (which describes
microprocessor-specific knowledge). A verification engineer
develops templates, which specify structure of test programs
and properties they should satisfy. Genesys-Pro transforms
each template into a set of constraints and builds a test
program using constraint solving techniques. The tool is
quite universal and applicable to different microprocessor
architectures. However, so far as development of test
templates is done by hand, tests maintenance is hard enough.

In the paper [6] a technique for test generation basing on
FSM traversal is described. In one of the stages the technique
uses Genesys (the previous version of Genesys-Pro). A test
developer creates a microprocessor model using the SMV
language. After this, a set of paths covering all the edges of
the state graph extracted from the model is built. Each path
(so-called abstract test) is translated into a Genesys template.
The technique allows achieving good coverage of control
logic, but it has two principal shortcomings. First, one needs
a skilled expert to develop a microprocessor model. Second,
to be able to map abstract tests into Genesys templates, a
complex description has to be done.

Summing up, all the techniques reviewed can be divided
into two classes: techniques based on accurate
models [1,4,6] and techniques based on templates [5]. The
techniques of the first class allow achieving high quality of
verification. However, it is not practical to use them in early
design stages. Template-based techniques do not have this
shortcoming, but they are unsystematic and cannot guarantee
high quality of verification.

III. FOUNDATIONS OF THE SUGGESTED APPROACH
The suggested approach is based on combinatorial model-
based generation [7]. It uses formal specifications of
microprocessor ISA, which describe instructions regardless
of their processing on a pipeline. Description of each
instruction includes a mnemonic, list of operands,
precondition, latency, and semantics in the imperative form.
Besides instructions, test situations and dependencies
between instructions are formally described. Test programs
are generated automatically by combining test situations and
dependencies for finite sequences of instructions.

A. Structure of a Test Program
Test program is a sequence of test cases. The key part of a
test case is a test action, which is a specially prepared
sequence of instructions intended to create a certain situation
in microprocessor behavior (hazard, exception, and so on). A
test action is prepared by initializing instructions and
followed by a test oracle (sequence of instructions that
checks correctness of a microprocessor state after execution
of the test action). Thus structure of a test program can be
described by the expression:

Test = {〈Prei, Actioni, Posti〉}i=0,n-1,

where Prei is the initializing instructions of the ith test case,
Actioni is the test action, and Posti is the test oracle. In
elementary case a test program consists of a singular test
case without a test oracle (Test = 〈Pre, Action〉).

The assembler code below is a test program fragment that
contains one test case (we use MIPS ISA [8] to illustrate
ideas of the approach).

// Initialization of sub[0]: IntegerOverflow=true
// s5[rs]=0xffffffffc1c998db, v0[rt]=0x7def4297
lui s5, 0xc1c9
ori s5, s5, 0x98db
lui v0, 0x7def
ori v0, v0, 0x4297

// Initialization of add[1]: Exception=false
// a0[rs]=0x1d922e27, a1[rt]=0x32bd66d5
...
// Initialization of div[2]: DivisionByZero=true
// a2[rs]=0x48f, a1[rt]=0x0
...

// Dependencies: div[2].rt[1]-sub[0].rd[0]

// Test action: 2010
sub a1, s5, v0 // IntegerOverflow=true
add t7, a0, s3 // Exception=false
div a2, a1 // DivisionByZero=true

In this fragment, Action is represented as a sequence of

three instructions: sub, add and div. There is a register
dependency between the rt operand of the div instruction
and the rd operand of the sub instruction. This dependency
implies using the same register for each of the operands.
Initializing instructions Pre load values into the independent
input registers of all instructions of the test action (see
preparation of the instruction sub, for example). Post is
empty here.

B. Test Templates
Test template is an abstract representation of a test action
where constraints (test situations and dependencies) are
specified instead of concrete instructions and their operands’
values. Generally speaking, each template defines a testing
purpose (situation that should be tested). The goal of test
program generation is to construct a representative set of test
templates. One of the possible templates for the example
above is shown below.

IADDInstruction R, ?, ? @ IntegerOverflow=true
IADDInstruction ?, ?, ? @ Exception=false
IDIVInstruction ?, R @ DivisionByZero=true

The template is composed of three instructions. The first
two instructions belong to the equivalence class
IADDInstruction, while the third one belongs to
IDIVInstruction. For the first instruction the situation
IntegerOverflow=true is given (instruction should
throw the integer overflow exception). The situation of the
second instruction is Exception=false (absence of
exceptions). The third instruction should raise division by
zero (DivisionByZero=true). In addition, there is a
dependency between the first and the third instructions (the
first register of the first instruction is equal to the second
register of the third instruction). Independent operands of the
instructions, i.e., operands that are not revolved by the
dependency are denoted as ?.

Test templates are allowed to be parameterized. The
example below demonstrates a template with four
parameters: $FirstInstruction (equivalence class of
the first instruction), $Situation (test situation of the first
instruction), $ThirdInstruction (equivalence class of
the third instruction), and $Dependency (dependency of
the third instruction on the first and the second instructions).

$FirstInstruction @ $Situation
IADDInstruction @ IntegerOverflow=false
$ThirdInstruction @ $Dependency

C. Test Situations
Speaking about control logic verification, test situations
related to execution of instructions on a pipeline are of
interest. As a rule, processing of an instruction is performed
in the same way for all values of the operands (of course, if
exceptions are not taken into account). Thereby, for an
instruction that can raise N exceptions, N+1 test situations
are usually defined: Exception=false, Exception0=true, …,
ExceptionN-1=true. For an instruction which handling
depends on the operands values one should specify all
possible paths of its execution.

Branch instructions are examined in a particular way. A
test situation of a branch instruction includes a target address
and truth values of the condition (if the branch instruction is
conditional). In general case, a test situation is as follows:
Target=Label, Trace={C0, …, CM-1}, where Label is a target
label (address) and Ci is a truth value of the branch condition
for the ith time of the instruction execution.

D. Dependencies between Instructions
Dependencies between instructions are thought to have a key
role in creation of pipeline hazards. There are two main types
of dependencies: register dependencies and address
dependencies (data dependencies). Register dependencies
are expressed as equality of registers being used as operands
of two instructions. Such dependencies can be of the
following types:

• read-read — both instructions read from the same
register;

• read-write — the first instruction reads from a
register, while the second one writes into it;

• write-read — the first instruction writes into a
register, while the second one reads from it;

• write-write — both instructions write into the same
register.

Address dependencies have more complex structure and
are related to internal organization of memory management
units [9]. Some examples of the address dependencies are
itemized below.

• VAEqual — equality of virtual addresses;
• TLBEqual — equality of TLB entries;
• PAEqual — equality of physical addresses;
• CacheRowEqual — equality of cache rows.

IV. THE SUGGESTED APPROACH
Basing on documentation analysis, a verification engineer
marks out situations “interesting” from the control logic
point of view (different types of pipeline hazards). For each
hazard type its generalized specification is developed, which
is a parameterized template creating the corresponding
hazard situation. Such templates are also called pipeline
hazards templates or basic templates. Basic templates are
usually of a small size, because hazards between instructions
occur if instructions are close to each other. To be able to
generate tests, one should define iterators of templates’
parameters. After this, a generator constructs test programs
using different values of the parameters and combining
templates together.

A. Specification of Hazards
Let us examine a general scheme of pipeline hazards
specification. All of the situations derived from the
documentation are classified by their types (see Fig. 1). The
four main types are exceptions, data hazards, structural
hazards, and control hazards.

Pipeline Hazard
Situations

Exceptions Data Hazards Structural
Hazards

Control
Hazards

Exception
IntegerOverflow

ALU Hazards

GPR Registers
Hazards

Incorrect
Prediction

Figure 1. Classification of pipeline hazard situations

Generally, all situations of the same type are described
by one basic template. The difference between two single-
type specifications is connected with various constraints for
template parameters – parameters domain is divided by a
verification engineer into a number of equivalence classes,
and this serves as a basis for the further construction of
iterators (see Fig. 2).

Specification of a Hazard Situation

Constraints for Parameter $P1

Constraints for Parameter $PK

Pipeline Hazard
Template

…

Figure 2. Specification of a hazard situation

1) Specification of Exceptions

Exception is a special event that signals that something goes
wrong during instruction execution. When an exception is
raised, control flow is switched to a special routine, called
exception handler, and all the instructions loaded after the
instruction throwing the exception are flushed. The typical
errors related to exception handling are incorrect setting of
an exception signal (incorrect calculation of an exception
condition) and incorrect flushing of loaded instructions.

There are two main strategies for exception handling in
test programs. First, if an exception is raised, execution is
switched to the next instruction of the test action. Second,
execution is switched to the test oracle passing the rest

instructions of the test action. To check pipeline flushing
mechanisms, the second strategy is preferable. Generalized
specification of an exception is given by the template below.

$PreInstructions
$ExceptionInstruction @ $ExceptionType
$PostInstructions

The template uses the following parameters:
• $PreInstructions — a sequence of instructions that precedes

an exception (pre-instructions should not raise exceptions);
• $ExceptionInstruction — an instruction that raises an

exception;
• $ExceptionType — an exception type;
• $PostInstructions — a sequence of instructions that

succeeds an exception (post-instructions should be flushed).

Here is an example of a concrete test action that
corresponds to the template given.

dadd r25, r30, r7
lb r22, 0(r4) // TLBInvalid=true
daddiu r5, r18, 13457

The sequence $PreInstructions consists of the
only instruction dadd. $ExceptionInstruction is
instantiated by the instruction lb that raises the exception
TLBInvalid ($ExceptionType). The sequence
$PostInstructions includes the only instruction
addiu.

2) Specification of Data Hazards

Data hazards are situations in which different instructions
try to access the same data and at least one instruction tries to
write them. Thereby, to describe data hazards, one should
use “read-write”, “write-read”, and “write-write” types of
dependencies. The typical error related to data hazard
resolution is incorrect implementation of pipeline interlocks
resulting in data flow integrity violation. Generalized
specification of a data hazard is given by the template below.

$PreInstructions
$FirstInstruction
$InnerInstructions
$SecondInstruction @ $Dependency
$PostInstructions

The template uses the following parameters:
• $PreInstructions — a sequence of instructions that precedes a

dependency (pre-instructions should not raise exceptions);
• $FirstInstruction and $SecondInstruction — a pair of

dependent instructions that causes a data hazard;
• $Dependency — a dependency between instructions that causes a

data hazard;
• $InnerInstructions — a sequence of instructions between

dependent instructions (inner-instructions should not raise exceptions
and produce hazards);

• $PostInstructions — a sequence of instructions that succeeds a
data hazard (post-instructions are usually suspended with the
dependent instruction).

Here is an example of a concrete test action that
corresponds to the template given.

madd.s $f18, $f6, $f28, $f10
add.s $f8, $f17, $f3
ceil.l.s $f2, $f18 // Data hazard
div.s $f23, $f13, $f24

3) Specification of Structural Hazards

Structural hazards occur when several instructions try to
access the same unit of a microprocessor (or some other
resource). Usually, such kinds of hazards happen when two
similar multi-cycle instructions are located closely to each
other. In some cases an additional data dependency is
required to create a structural hazard between instructions.
The typical error related to structural hazard resolution is the
same as for data hazards (incorrect implementation of
pipeline interlocks). Generalized specification of a structural
hazard is absolutely the same. A concrete example is given
below.

div.s $f11, $f27, $f3
add.s $f28, $f7, $f30
div.d $f23, $f1, $f20 // Structural hazard
add.d $f18, $f2, $f25

4) Specification of Control Hazards

Control hazards are related to branch instructions.
Depending on microprocessor organization, execution of a
branch instruction can result in pipeline stalling or flushing.
Errors of control hazard resolution relate to pipeline
interlocks, branch prediction and other control logic
mechanisms. Generalized specification of a control is given
by the template below.

$PreInstructions
$BranchInstruction @ $Target, $Trace
$DelaySlots
$PostInstructions

The template uses the following parameters:
• $PreInstructions — a sequence of instructions that precedes

a branch instruction;
• $BranchInstruction — a branch instruction;
• $Target — a target address of a branch instruction;
• $Trace — an execution trace of a branch execution (sequence of

truth values of a branch condition);
• $DelaySlots — instructions in delay slots;
• $PostInstructions — a sequence of instructions that

succeeds a branch instruction.

Here is an example of a concrete test action that
corresponds to the template given.

L:addi r1, r1, 1
 beq r1, r0, L // Target=L, Trace={1, 0}
 dadd r7, r12, r23

B. Test Programs Generation

Let us consider how test programs are generated on the base
of test templates. Test actions are divided into two types:
simple test actions (which correspond to a single basic
template) and composite test actions (which are constructed
by composition of several basic templates).

1) Constructing Simple Test Actions

Simple test actions are targeted at creation of one hazard
situation. A technique for their construction is easy and
based on using basic templates and iterators. For each
situation derived from documentation, a set of test actions is
built. Test actions are constructed by iterating parameters

values and combining them to each other (commonly, all
possible combinations are used) (see Fig. 3).

Generation of Simple Test Actions

Iterator for Parameter $P1

Iterator for Parameter $PK

Pipeline Hazard
Template

…

Figure 3. Generation of simple test actions for a pipeline hazard

Let us examine simple test action construction for a
structural hazard on FPU (Floating Point Unit) being
described by the following basic template:

$PreInstructions
$FirstInstruction
$InnerInstructions
$SecondInstruction @ $Dependency
$PostInstructions

Some constraints on parameters values are defined for
this hazard. For example, the hazard occurs only between
instructions being executed more than one cycle. It is also
obvious that size of $InnerInstructions should not
exceed latency of $FirstInstruction subtracted by
two. In addition, equivalence classes of dependent
instructions can be given. Assume that the template’s
parameters are setup with the following values.

FMULInstruction : {mul.s, mul.d}
FDIVInstruction : {div.s, div.d}
IADDInstruction : {add, sub}

$PreInstructions : {}
$FirstInstruction : FMULInstruction, FDIVInstruction
$SecondInstruction : FMULInstruction, FDIVInstruction
$Dependency : class($FirstInstruction) ==
 class($SecondInstruction)
$InnerInstruction : {IADDInstruction}
$PostInstructions : {}

Given the parameters values, two test actions are
generated:

$PreInstructions →
$FirstInstruction → mul.d $f12, $f3, $f21
$InnerInstructions → sub r6, r15, r3
$SecondInstruction → mul.s $f9, $f23, $f7
$PostInstructions →

$PreInstructions →
$FirstInstruction → div.s $f18, $f28, $f4
$InnerInstructions → add r25, r13, r27
$SecondInstruction → div.s $f5, $f12, $f10
$PostInstructions →

2) Constructing Composite Test Actions

The aim of composite test actions as opposed to simple test
actions is creation of several “simultaneous” pipeline
hazards. Composite actions allow testing complex situations
in microprocessor behavior (parallel hazards, nested
hazards, parallel exceptions, and so on). Construction of
composite actions is performed by composition of several
basic templates.

Let T be a template of an arbitrary type, TE be a template
of an exception, TH be a template of a data or structural

hazard, and, finally, TC be a control hazard template. The
main composition operations are given below.

a) Overlapping: T=TH1|TH2
TH.PreInstructions = TH1.PreInstructions ≡ TH2.PreInstructions
TH.FirstInstruction = TH1.FirstInstruction ≡ TH2.FirstInstruction
TH.SecondInstruction = TH1.SecondInstruction ≡ TH2.SecondInstruction
TH.Dependency = TH1.Dependency & TH2.Dependency
TH.InnerInstructions = TH1.InnerInstructions ≡ TH2.InnerInstructions
TH.PostInstructions = TH1.PostInstructions ≡ TH2.PostInstructions

b) Shift: TH=TH1↓TH2
TH.PreInstructions = TH1.PreInstructions
TH.FirstInstruction = TH1.FirstInstruction
TH.SecondInstruction = TH1.SecondInstruction
TH.Dependency = TH1.Dependency & TH2.Dependency
TH.InnerInstructions = {TH1.InnerInstructions, TH2.FirstInstruction, TH2.InnerInstructions}
TH.PostInstructions = {TH1.PostInstructions, TH2.SecondInstruction, TH2.PostInstructions}
TH1.PostInstructions ≡ TH2.PreInstructions

c) Concatenation: T=T1→T2
T.PreInstructions = T1.PreInstructions
T.MainParameters = T1.MainParameters2
T.PostInstructions = T2
Тype of a template T matches with the type of a template T1

d) Nesting: TH=TH1[T]
TH.FirstInstruction = TH1.FirstInstruction
TH.SecondInstruction = TH1.SecondInstruction
TH.Dependency = TH1.Dependency
TH.PreInstructions = TH1.PreInstructions
TH.InnerInstructions = T
TH.PostInstructions = TH1.PostInstructions

To clearify the semantics of composite templates, let us
consider an example where the overlapping is used to
compose a data hazard and a structural hazard:
$PreInstructions1,2 → add.s $f28, $f7, $f30
$FirstInstruction1,2 → div.s $f11, $f27, $f3
$InnerInstructions1,2 → dsub r25, r30, r7
$SecondInstruction1,2
 @ $Dependency1 & $Dependency2 → div.d $f23, $f11, $f20
$PostInstruction1,2 → lb r22, 0(r4)

It is intuitively obvious how to iterate test actions for a
given composite test template. Some parameters of different
basic test templates are identified. After this, iterators are
specified for resultant parameters (commonly, iterators
developed for simple templates are used). Generation of
composite test templates is perform by enumeration of
different syntactical structures consisting of a small number
of basic templates connection by composition operations.

V. CASE STUDY
The suggested approach was applied to verification of
control logic of two arithmetical coprocessors, floating point
coprocessor (CP1) and complex arithmetic coprocessor
(CP2). Coprocessors have common control flow with CPU
and use three execution channels (functional pipelines):

• channel of floating point arithmetic;

2 MainParameters is set of template parameters excluding PreInstructions
and PostInstructions.

• channel of RAM operations;
• channel of on-chip memory operations.

The control logic supports solving of different types of
hazards. In both coprocessors memory exceptions can occur.
In addition, in CP1 arithmetic exceptions can be raised. The
CPU implements static branch prediction and speculative
execution mechanisms.

The test actions were composed of four instructions of
different types. Structure of the test situations and
dependencies was very much the same as it is described in
the paper, but some particular features of the
microarchitecture were taken into account and additional
data dependencies were included.

TABLE I. CASE STUDY INFORMATION

CPU
revision

Code volume
(LOC)

Number of
instructions

Affected
instructions

Affected code
(LOC)

Coprocessor CP1
8 28500 113 — —
20 28650 114 94 485 (1.7%)
Coprocessor CP2
8 4950 15 — —
20 11550 59 5 45 (0.9%)
29 14350 100 18 165 (1.4%)

Table I shows code volume (including ISA specifications

and pipeline hazards templates), number of implemented
instructions, number of instructions affected by the revision
and volume of the affected code. As it is seen in the table,
when the microprocessor is modified, a small part of the
generated code has to be changed. It took us less than half an
hour to alter the code.

The generated test programs detected a considerable
number of errors in both coprocessors which had not been
found by randomly generated test programs.

VI. CONCLUSION
Verification of a pipeline microprocessor is a very difficult
task that cannot be carried out without using automation
techniques. In the paper the technique for automated test
programs generation is described. As opposed to the
common approaches, like manual development and random
generation, the suggested methodology has a high level of
automation and allows systematically testing control logic of
a microprocessor. At the same time, the methodology differs
from the approaches that use accurate models by the
possibility of using it in early design stages when
microarchitecture is frequently revised.

Using accurate models of control logic is reasonable in
late stages of a microprocessor design cycle when control
logic is stable. Due to the high informativeness of accurate
models, such approaches allow finding errors which are
really hard to detect. Moreover, accurate models make it
possible to create more compact set of tests. In the future we
are planning to extend the approach to support accurate
models as well. This would make the generator to be more
flexible – it would be applicable to both early and late design
stages unifying the verification process.

REFERENCES
[1] P. Mishra, N. Dutt. Specification-Driven Directed Test Generation for

Validation of Pipelined Processors. ACM Transactions on Design
Automation of Electronic Systems, 2008.

[2] P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt, A. Nicolau.
EXPRESSION: An ADL for System Level Design Exploration.
Technical Report 1998-29, University of California, Irvine, 1998.

[3] www.cs.cmu.edu/~modelcheck/smv.html.
[4] T.N. Dang, A. Roychoudhury, T. Mitra, P. Mishra. Generating Test

Programs to Cover Pipeline Interactions. Design Automation
Conference, 2009.

[5] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
A. Ziv. Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification. Design and Test of Computers,
2004.

[6] S. Ur, Y. Yadin. Micro-Architecture Coverage Directed Generation
of Test Programs. Design Automation Conference, 1999.

[7] A. Kamkin. Test Program Generation for Microprocessors. Institute
for System Programming of RAS, 2008. (in Russian)

[8] MIPS64TM Architecture For Programmers. Revision 2.0. MIPS
Technologies Inc., 2003.

[9] D. Vorobyev, A. Kamkin. Test Program Generation for Memory
Management Units of Microprocessors. Institute for System
Programming of RAS, 2009. (in Russian)

