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Abstract—This paper is devoted to the problem of an
observable form for a given Timed Finite State Machine.
This problem, together with the problem of the number of
states in the observable form, has theoretical value, since it
shows the way to build an observable form, and answers the
question, does an observable form exist for any TFSM. Also
it has a practical use in testing, since Finite State Machine
methods of test generation rely on the fact that specification
of a system is an observable FSM and those methods are
intended to be applied for TFSMs.
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I. INTRODUCTION

Problem of testing communication protocols has drawn
a lot of attention of different researches. The most popular
paradigm for such testing is model based testing, when a
system and its specification are supposed to be described
as models of some kind, and the problem of testing is
re-expressed as a problem of checking relations on those
models. One of the most popular model for communi-
cation protocols description is a Finite State Machine
(FSM) [1] and there are lots of tests generation methods
for FSMs [6]-[8]. These methods suppose, that an FSM
is given in observable form [2]. But FSM as a model
has some limitations, one of which is that FSM does not
consider time explicitly, but a communication protocol
usualy has different behaviour depending on the time
elapsed after last message it has receved or sent. This issue
can be dealt with by direct introduction delay transitions
into FSMs and such a model has been called Timed Finite
State Machine(TFSM) [?], [4].

New model rises a problem of new methods for test
generation. The obvious solution to this problem is to
adopt well-known methods of test generation for regular
FSMs. And this, as a consequence, gives a problem of an
observable form for a given non-observable TFSM. In our
work we give a solution to this problem as an observable
form construction procedure.

The rest of the paper has the following structure. In
section II all necessary definitions and notions are given.
Section III gives some comparison of TFSM with other
timed models. Section IV discusses a problem of observ-
able form construction and gives corresponding procedure.
Section V concludes the paper.

II. PRELIMINARIES

Here and further N denotes the set of natural numbers,
ZS‘ denotes the set of unsigned integer numbers (that is

74 =NuU{0).

Definition 1. A Timed Finite State Machine (TFSM) is
a sixtuple S = (5,1, 0, §, \s, Ag), where S is finite, not
empty set of states with designated initial state §, I and
O are finite, not empty sets of input and output actions
respectively, A\g C .S x I x O x § is a transition relation,
Ag: S — 5 x Nis a delay function. We assume, that if
Ag(s) = (s',00), then s’ = s. O

With every TFSM we associate an internal clock vari-
able x, which measures time in integer number of ticks
passed from the last state change of the TFSM.

If (s,i,0,8"Y € Ag (we denote this fact as s o, g
and call o an output reaction of the TFSM in the state
s on input action %), then we say, that TFSM S being in
the state s accepts input ¢, immediately produces output
action o and at the same moment changes state to s’. In
the state s’ clock variable  is reset to 0.

Function Ag(s) = (s”,t) (denoted as s — s”) de-
scribes delay transitions of the TFSM: if no input action
is applied to TFSM S in the state s within ¢ ticks, then
at the moment x = ¢t it changes its state to s” and resets
its clock variable to 0. If Ag(s) = (s, 00), then TFSM S
can stay in the state s infinitely long, waiting for an input
action.

Definition 2. A timed input action is a tuple (i,t) €
€ I x Z7, meaning that input action i should be applied
to a TFSM at the moment ¢, after last state change of the
TFSM. A timed input-output pair is a tuple ((i,t),0) €
€ I x Z§ x O, usually denoted as (i,t)/o. A timed input
sequence « is a sequence of timed inputs, that is o €
e (I xZd)" O

Definition 3. Given a TFSM S = (5,1, 0, §, g, Ag).

o out(s, i) e {o€ 0|35 €S:(si0,5)€rs} -

set of output reactions of the TFSM S in the state s

on the input <.

o [s]iso ef {s' € S| (s,4,0,8") € Ag} — set of states,

reachable from the state s under input-output pair
(1,0) € I x O.

e [s]: — is such state s’, that TFSM S reaches s’ from
s after ¢ time units, that is there exist states s = s,
59, ..., 8 = s, and s h, S9 tz, S3... —5
sp and Z;-l:_llt]‘ <t < X7 t;, where Ag(s)) =
(sj+1,t5), 7 = 1,n. Note, that due to the fact, that
Ag is completely defined function on the set S, such

a state s’ always exists and is unique.

o [sliity/0 & [[s]¢]i/0 — set of states, reachable from



the state s under timed input-output pair (i,t)/o. If
s" € [s](i,1)/0- then we say, that there is a transition
form the state s to the state s’ under the timed input
(i,t) with output reaction o and denote this fact as
g fetfo

o out(s, (i,t)) of out([s]¢, ) — set of output reactions

of the TFSM S on timed input (7, t).

O

Definition 4. Given a TFSM S and timed input sequnce
a = (i1, t1) - {i1,t1) - ... - (in,t,). We say, that timed
input sequnce « brings TFSM S from the state s to the
state s’ if there exist such states sq, s3, ..., Sp,—1 and
output sequence 3 = 01 - 03 - ... - 0,, that the following
(i1,t1)/01 (i2,t2)/02 (i3,t3)/03

‘n;tn n .
Sp_1 {in tn)/o s’. We denote this

property holds: s

(in—1,tn—1)/0n-1

fact as s LN s’ and call the sequence (3 output reaction
of TFSM S on timed input sequence « and the pair o/
timed input-output sequence of the TFSM S in the state
s. The set of all input-output sequnces of the TFSM S in
the state s we shall denote as I'g(s). O
All notions from Definition 3 are naturally extended to
timed input-output sequences.
Definition 5. Two TFSMs S and P are called equiva-
lent, iff Tg(8) = T'p(p). O
Definition 6. Given a TFSM S.
o« TFSM S is called deterministic, iff for any pair
(s,i) € S x I there exists at most one pair (0,s’) €

€ O x S such, that s e, s’, otherwise it is called
non-deterministic.

o« TFSM S is called observable, iff for any triple
(s, 1,0) there exists at most one state s’ € .S such, that

that s LN s’, otherwise it is called non-observable.

O

Definition 7. Given non-observable TFSM S. An
observable TFSM P, such that S is equivalent to P we
shall call an observable form of the TFSM S. O

III. TIMED FINITE STATE MACHINE AND TIMED
AUTOMATA

Comparing TFSM with classical timed automa-
ton (TA) [9] one can see several differences. Most obvious
is the number of time variables: TFSM always has only
one time variable, while a TA can have any finite number
of time variables. This prevents from turning an arbitrary
TA into TFSM, since it is known [10], that the number of
time variables is not reducable in general case.

Another difference is the roles of actions. TA considers
just a set of actions, labling transitions, without assigning
any roles to them, while in TFSM actions are split
into input and output actions and actions always occur
in pairs “input/output”. This issue can be overcome by
assigning roles to actions and, eo ipso, by consideration
of timed atomata with inputs and outputs (TAIO) [11] and
restricting TAIO to the form, when output action always
comes after input action. TAIO model also overcomes an
issue of the time behaviour representation. In a TFSM

it is done in a form of time delay transitions. A TAIO
analogue of time delay transitions is a transition with
unobservable action 7. Howevere, the latter does not mean,
that a TAIO is more general model, than TFSM, because
in general case TAIO, which has been gotten from TFSM,
can occur nondeterministic, even if given TFSM was
deterministic and no one has shown yet, that such a TAIO
is determinizable. This should be done, since it is known,
that in general nondeterministic TA (and TAIO as well) is
not determinizable [10].

IV. BUILDING OBSERVABLE FORM OF A TFSM
A. A State Stay Time

In the theory non-deterministic Finite State Machines
(FSM) to build an observable form G of a given non-
observable FSM F one should map subsets of states of the
FSM F, which appear due to non-observable transitions
(transitions from a given state under the same input-output
pair to a diffrent states) to states of G [5]. We shall adopt
the same idea to TFSMs with the following modification.
Due to delay transitions some set of states can appear
with different values of the internal time variable x for
each state in the considering set of states. This leads to
the necessity to keep value of internal time variable for
each state as it is done for intersection of TFSMs [4]. For
example, let us imaging, that we have the following delay
transitions: s 2, sh 2, s1 and s9 3, sh 2, so and we
consider the set of states {s1,s2} when x = 0 for each
state. Then we shall get following transitions:

2 1 ;11 ;1 1
§182 — 8182 — §189 — 8189 — S1852 — ...
00 0 2 10 01 10

Under each state we write the value of internal time
variable x. As you can see, pair sjsy appears in the
sequence twice, but with different times.

B. A Procedure to Build an Observable Form for a Given
TFSM

Given non-observable TFSM S = (S,1,0, 3, g, Ag).
With each state s € S we associate set K, =
={0,1,...,ks — 1}, where Ag(s) = (s',t) and ks = ¢,
when t # oo, or ks = 0, when ¢t = oo. Each state
of observable form P for TFSM S corresponds to some
subset of the set U = Ugeg{s} x K, — the set of all
possible pairs state-stay_time.

The observable form P for TFSM S is constructed as
follows.

1) Initial state of P is a pair (8,0), that is p = {(8,0)}.

2) Let {(s1,t1)...(Sn,tn)} is under consideration. If,

according to Ag, the following holds [{s1,...,5n}]i/0 =
= {s},...s!,}, then transition

{{s1,82) - (st} 25 {(83,0), - (51, 0)}
is in )\P.

3) Let {(s1,%1)...(Sn,tn)} is under consideration and
let As(s1) = (s9,t)), ..., Ag(sn) = (s,,t..). Then

n»’n

Ap({{s1,t1) - (sn,ta)}) = ({{s1,11) .- (s, 1) 1 1),



where ¢t = min {(¢] — t1),..., (¢, — t,)} — time for the

earliest delay transition to fire. If ¢, = oo or (¢} —t;) = t,
" __ /4

then s s’ and t;’ = (0, otherwise s;-’ = s; and t;’ =
t; +t.

Proposition 1. TFSM P, built with decribed procedure,
is an observable form for a given S. O

It is known [5], that the number of states in observable
form for a given FSM F is not greater then 2/ — 1,
where |F| is the number of states in the given FSM F.
This estimation comes from the fact, that the number of
all possible non-empty subsets of the state space F' is
exactly 2/F1 — 1 and only such subsets describe states in
observable form. We use the same reasoning to estimate
the states number upper bound in observable form P for
non-observable TFSM S. Since to describe states in P we
use non-empty subsets of the set U = Ugcs{s} x K, then
the number of states in P is limited by the number of such
subsets, that is |P| < 2!Vl —1 = 2%seshs 1k, = |K,|.
But this estimation is too rough, since we do not take into
account the fact, that due to observable form construction
procedure, any state p = {(s1,t1),...,(Sn,tn)} of the
observable form P is so, that at least one t; € {t1,...,t,}
equals 0. For example, in extreme case when for any
state s of the given non-observable TFSM S holds the
following: Ag(s) = (s',t) (time of a delay transition is
the same for any state), all states of the observable form
are subsets like the following {(s1,0),...,(s,,0)} and
their number is exactly 2/5 — 1.

For the reasons described above the general estimation
for the number of states in observable form for a given
TFSM is no reachable (as opposed to the estimation for
regular FSMs [5]).

V. CONCLUSIONS

In this paper we have considered the problem of the
observable form for a TFSM. We have provided the
procedure to build an observable form for a given non-
observable TFSM and gave some estimation for the num-
ber of states in observable form.

The open problem of this paper is the problem of more
accurate estimation of number of states in observable form
of a given TFSM and the question of its reachability.
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