

Abstract — In this work the database index for approximate
string search is proposed. In particular the task of finding
strings from some data domain which have a distance from
given string less than given number is considered. Some kind of
editorial string distance is used in capacity of string distance.
Some subclass of regular expressions is used in the capacity of
tree node predicates. The analysis of performance tests was
performed and the areas of further researches were surveyed.

Index Terms — database systems, approximate string
searching, search tree, dictionary search

I. INTRODUCTION
raditional database queries support a limited number of
predicates. The limitation of standard search queries is

caused in part by lack of implementation of required data
types and search predicates in DBMS. This limitation is also
caused by finite data structures on which database indexes are
based. Search predicate support by database index frequently
is required in order for a database to be scalable in terms of
data amount incensement. The traditional search query
predicates which are supported by database indexes are
equality and linear range predicates [1].

Modern database applications tend to extend their
functionality. Part of this functionality can be implemented
without extension of DBMS, but the other part is not. Modern
database applications frequently require the support of
nonstandard data types and nonstandard search query
predicated from a DBMS. An example of an application of
nonstandard data types and nonstandard search query
predicates is geographical informational systems (GIS). In
these systems the geometrical data types which are
nonstandard in DBMS are used. Also, the search predicates
like overlap and containment are non-standard on DBMS.
The spatial indexes are used for search optimization of these
predicates [2].

This work considers the implementation of a database
index for approximate stirng searching. The search predicate
is based on the editorial distance between strings. The
database index was implemented as an extension of GiST,
which is a universal framework for database index
implementation.

II. APPROXIMATE STRING SEARCH
An approximate string search is implied as a string search

when search pattern or search domain can suffer from some
kind of distortion. Some examples of approximate string
search are finding DNA subsequences after possible
mutations [3, 4, 5] and searching for typing and spelling
errors in text [6, 7, 8].

In this work the searching data domain is the set S of
strings si; S = {s1, s2, … , sn}. The search predicate is the
assertion that the editorial distance from the element of
domain si to the search string p is less or equal than fixed
number d, i.e. ed(si, p) ≤ d. The editorial distance between
string s1 and string s2 is the minimal number of editorial
actions required to transform s1 to s2. In this work the
Levenshtein distance [9] is used in the capacity of editorial
distance. In the Levenshtein distance there are three editorial
actions: character insertion, character deletion, and character
replacement. This type of search predicate can be applied to
search for a misspelled word in the dictionary. However, the
application of this search predicate is not limited by described
case.

Various implementations of database indexes for
approximate string search in this definition already exist [10].
In this work the search index implementation based on a
generalized search tree is presented. The pg_trgm module
which is an implementation of approximate string search
indexes already exists for GiST [11]. However in the pg_trgm
the amount of matching trigrams is used in the capacity of
string distance whereas in this work the Levenshtein distance
is used.

III. GENERALIZED SEARCH TREE
Generalized search tree presents a very general solution of

the generalization of database access methods. GiST is the
data structure which is extensible in terms of search queries
as well as in terms of indexing data types. GiST defines the
set of interface functions, for which implementation defines
search indexes. These interface functions only depend on
indexing data type and search predicates, but these functions
are abstracted from data pages, records, query processing, etc.
Thus to implement a search index using GiST it is not

Database index for
approximate string matching

Alexander Korotkov
National Research Nuclear University "MEPhI"

Moscow, Russia
email: aekorotkov@gmail.com

T

required to write a code which maintains data structure [12].
Additionally, GiST generalizes the majority of currently
existing search trees. For example B+-tree and R-tree can be
implemented as GiST extensions [13].

At this moment GiST is fully implemented in open source
postrelational DBMS PostgreSQL, though the result of GiST
researches is used in the majority of commercial DBMSs such
as Oracle and DB2. Several reasons for implementation of
search index based on GiST in this work can be noted:
 To provide open source and license free solutions for

approximate string searching
 To see completely new application of GiST
 Simplicity of GiST extension implementation

IV. USING GIST FOR APPROXIMATE STRING SEARCH
As it was noted before the Levenshtein distance is used in

the capacity of string distance. The Levenshtein distance is
the minimum number of elementary operations needed to
transform one string to another one. There are the following
elementary operations:
 Insertion of arbitrary character to arbitrary position of

string
 Replacement of arbitrary character of string with

another arbitrary character
 Deletion of arbitrary character of string
The two sequences alignment algorithm [14, 15] can be

used in order to calculate the distance between strings a and
b. The two modifications of this algorithm were introduced in
this work. Next let’s consider this algorithm in detail.

The a = a1a2…an and b = b1b2…bm are two strings of
length n and m. The alignment is produced when a null
character «-» is inserted into the strings; the new strings must
have the same length L. After insertion of «–» the a =
a1a2…an becomes a* = a1

*a2
*…an

* and b = b1b2…bm becomes
b* = b1

*b2
*…bm

*. The alignment is the two sequences which
are written one over the other.

*
L

*
2

*
1

*
L

*
2

*
1

b...bb
a...aa

The distance between strings a and b is introduced as:

L

1i

*
i

*
i)b,d(amin),D(ba

The d(a,b) represents the distance between characters a and
b. In the case of Levenshtein distance d(a,b) is defined below:

ba1,
ba0,

b)d(a,

1a),d()d(a,

The matrix D is introduced as the distance between
prefixes of strings a and b.

Di,j = D(a1a2…ai,b1b2…bj)

There are following rules of matrix filling:
0D0,0

j

1k
kj0,)b,d(D

i

1k
ki,0),d(aD

)}b,d(D),b,d(aD),,d(amin{DD j1ji,ji1j1,iij1,iji,

TABLE 1. THE MATRIX OF ALIGNMENT
 – b1 b2 … bm

– D0,0 D0,1 D0,2 … D0,m
a1 D1,0 D1,1 D1,2 … D1,m
a2 D2,0 D2,1 D2,2 … D2,m
… … … … … …
an Dn,0 Dn,1 Dn,2 … Dn,m

The bottom right element of the matrix represents the
distance between strings.

Dn,m = D(a1a2…an,b1b2…bm) = D(a,b)

A. Search predicate
In this work the optimizable search predicate is P(x) =

(levenshtein (s,x) ≤ d), where levenshtein – the function of
Levenshtein distance calculation, s – given string, d – given
nonnegative number. Thus this predicate is true for strings
which have Levenshtein distance to a given string less than or
equal to a given number. Considering Levenshtein distance as
metrics (it is possible because this distance has metrics
properties) set of strings satisfying this predicate can be
represented as solid sphere with center in s string and d
radius.

B. Tree node predicate
The selection of tree node predicate is critical for GiST

extension implementation. All the characteristics of the
resulting tree generally depend on selected tree node
predicate. In this work the predicate of matching to some
class of regular expressions was selected. The description of a
selected class of regular expressions is below. Each
expression of a selected class can be represented as a
concatenation of n (n is nonnegative integer) sub-expression.
Each sub-expression can be defined in one of the ways below:
 One character from set of m characters (format of sub-

expression is “[a1a2…am]”)
 One character from set of m characters or empty string

(format of sub-expression is “[a1a2…am]?”)
 Any character or empty string (format of sub-

expression is “.?”)
In this work when the term “regular expression” is used

this class of regular expressions is mentioned.

C. GiST interface methods implementation
The GiST interface consists of 7 methods. The purpose of

these methods is considered below.
1) compress and decompress – these two methods are

responsible for key compression and decompression
(in keys should be suitable to work with them but it
is frequently reasonable to compress a key before
storing it to disc)

2) consistent – this method calculates compatibility of

tree node key and search query (The search
optimization performs at the expense of this method.
If the predicate of the tree node is incompatible with
the search predicate then all the sub-tree should be
skipped)

3) union – this method returns the union of two keys
(all the values which conform to any of source keys
should conform to the resulting key)

4) penalty – this method returns the measure of growth
of the source key after addition of another key to it
(this value should represent the measure of growth of
values set which conforms to the key predicate)

5) picksplit – this method splits an array of keys into
two arrays. It is desirable that union keys of the
resulting two arrays have a minimal size (the size of
the key is assumed to be the size of set of values
which conform to the key predicate)

6) same – this methods checks if two keys are the same
In this work the compression of keys before writing them to

the disc is not used. This is why the implementation of the
compress and decompress methods was trivial. The
implementation of same method also was trivial because all
the regular expressions are stored in same manner. The
penalty and picksplit methods were implemented using the
keys union function and key size measurement function. The
penalty method calculates keys union and calculates the
difference between keys union size and source key size. The
picksplit method is based on the Guttmann’s clusterization
algorithm. The union and consistent methods use the
modification of two strings alignment algorithm.

1) Consistent method
The consistent method implementation uses the

modification of two strings alignment algorithm[14] which
makes it possible to find the minimal Levenshtein distance
between any string which conforms to regular expression and
the search query string. The resulting minimal distance can
be represented by the expression:

d = min{levenstein(s,x)|x~r}
where s – search query string, r – regular expression, “~” –

operator of regular expression conformance.
The decision on compatibility of search query and regular

expression is made by comparing the resulting value and
maximum distance of the search query.

The modification of two strings alignment algorithm is
used in calculations of minimal distance. In this modification
alignment between s = s1s2…sn and r = r1r2…rm is produced.
The minimal distance between a string which conforms to r
and s is calculated by expression:

L

1i

*
i

*
i),d(min),D(rsrs

There is following definition d(s,r):

s allowt doesn'r if 1,

s allowsr if 0,
r)d(s,

1d(s,-)

stringempty allowt doesn'r if 1,

stringempty allowsr if 0,
r)d(-,

TABLE 2. THE EXAMPLE OF ALIGNMENT MATRIX FOR FINDING MINIMAL
DISTANCE BETWEEN STRING AND REGULAR EXPRESSION

 - [dk] [uzm] [oc] .?
- 0 1 2 2 2
d 1 0 1 1 1
o 2 1 1 1 1
m 3 2 1 1 1

Other parts of this algorithm is similar to the original

algorithm. Let’s consider an example. Let’s find minimal
distance between “dom” word and “[dk][uzm][oc]?.?”
expression.

2) Union method
In the union method some other modification of the two

strings alignment algorithm was used. The following distance
function between two sub-expressions was used:

1

2

2

1
21 uc

u
uc

u)r,d(r

 ,

There u1 – the number of unique characters in the first sub-
expression (the number of characters which are allowed by
the first sub-expression and are not allowed by the second
sub-expression), u2 – the number of unique characters in the
second sub-expression and c – number of common characters
in sub-expressions. The empty string is assumed to be a
separate character.

The case of equality of one sub-expression to “.?” should be
considered separately (when the both sub-expressions are
equal to “.?”, it is evident that distance should be assumed as
zero). In this case following measure was used:

0)".?",d(".?"

n
cn)r,d(".?" 2

2

There c2 – the number of characters of second sub-
expressions and n – the total number of characters in the
alphabet used.

In the case of one sub-expression being skipped, the
following measure was used:

cu
u1 r)d(-, d(r,-)

 ,

There u = 0, when an empty string was allowed by sub-
expression, u = 1, otherwise; c – the number of characters in
sub-expression.

In this modification of alignment it is not only necessary to
calculate the distance but also to find the union expression.
Let’s consider alignment of two expressions a = a1a2… an and
b = b1b2…bm.

*
L

*
2

*
1

*
L

*
2

*
1

b...bb
a...aa

The resulting expression c = c1c2…cm can be calculated by
ci = u(ai,bi), where u – the function of two subexpressions

unification.
u(".?", a) = u(a, ".?") = ".?"

u("[a1a2…an]","[b1b2…bm]") = "[a1a2…anb1b2…bm]"
u("[a1a2…an]","[b1b2…bm]?") =
u("[a1a2…an]?","[b1b2…bm]")

= u("[a1a2…an]?","[b1b2…bm]?") = "[a1a2…anb1b2…bm]?"
In the operation of unification of sub-expressions if the

number of characters in the final sub-expression exceed the
threshold value k then this sub-expression is replaced by “.?”.
This replacement is performed in order to decrease the length
of sub-expression and to improve the performance.

Let’s consider the process of unification of
“[abc][def][hg]?.?” and “.?[ad][bef]?h?h?” expressions as an
example. The final matrix is presented below.

TABLE 3. THE EXAMPLE OF ALIGNMENT MATRIX UNIFICATION OF TWO

REGULAR EXPRESSION
 - .? [ad] [bef]? h? h?
- 0,00 1,00 2,33 3,33 4,33 5,33
[abc] 1,25 0,88 1,88 2,88 3,88 4,88
[def] 2,50 2,13 1,75 2,75 3,75 4,75
[hg]? 3,50 3,13 2,75 2,63 3,63 4,63
.? 4,50 3,50 3,75 3,59 3,53 4,53

The resulting alignment is

h?.?[befhg][adef].?union
h?h?[bef]?[ad].?2 expression

.?[hg][def][abc]1 expression

The union expression is “.?[adef][befhg]?.?h?”.

V. THE PERFORMANCE TESTING
Two tasks should be completed in order to perform

synthetic testing of a database index. These tasks are to
prepare test data domain and to prepare the test set of queries.
The English dictionary with a volume of 61 505 words was
used as test date domain.

After that the test was generated. There are two kinds of
generated tests. The first kind of test is with random
generated words. The second kind of test is with random
distortion in existing words.

In the tests with random generated words the sequence of
random characters of English alphabet with a length between
3 and 18 was generated. After that a random number between
1 and n/5 was generated. This number was used as the
radius of the search query. The expression n/5 was used as
the upper boundary in order to prevent the radius of the
search query from being too high in comparison with word
length.

In the tests with random distortion in existing words the
random word from the dictionary was selected. Let’s assume
the length of this word as n. After that the random distortions
(insertion, replacement and deletion of character) with
number between 1 and n/5 was applied to the selected word.
Eventually the random number between 1 and n/5 is

selected as the radius of search query.
The results of the tests are presented in the tables.

TABLE 4. THE RESULTS OF INDEX TESTING WITH RANDOM DISTORTIONS IN

EXISTING WORDS
Search query radius

 1 2 3
Average

Dist. S WOI WI S WOI WI S WOI WI S WOI WI

0 2,29 124 66 1,36 141 115 1,529 186 132 1,72 150 104

1 2,91 124 58 1,54 143 108 1,751 180 126 2,07 149 98

2 3,52 142 63 1,62 142 102 1,851 184 121 2,38 156 95

3 10,7 180 36 6,66 187 063 2,549 182 116 6,64 183 72

Avg. 4,85 142 56 2,80 153 097 1,920 183 124 3,19 160 92

In the table 4 the results of testing of search queries with
random distortion in existing words. The dependence of
average speedup (S), average search time without index (NI)
and average search time with index(I) on radius of search
query and number of distortion in source word is presented.
The speedup (S) calculates as S = Twoi / Ti, where Twoi and Ti
are the time of search without using of index and the time of
search with using of index respectively. As it is shown in the
table the quotient of NI and WI is less then S as the rule.
There is no contradiction because the average of quotient is
not the quotient of average. This argues that the faster queries
have higher speedup than slower ones.

In the table 5 the results of testing of search queries with
random generated words are shown. In this table the same
data as in the table above is presented but it depends on the
length of generated word and radius of search query. As it is
shown in the table the speedup increases as the length of
generated word increases, and speedup decreases as the
search radius increases.

TABLE 5. THE RESULTS OF INDEX TESTING WITH RANDOM WORDS

Search query radius
 1 2 3 4

Average

Len. S NI I S NI I S NI I S NI I S NI I
3 5,3 80 16 5,3 80 16
4 4,5 89 24 4,5 89 24
5 4,6 99 29 4,5 99 29
6 4,6 109 33 1,8 109 68 3,2 109 51
7 5,7 119 30 2,2 119 71 4,0 119 50
8 6,6 128 27 2,7 128 63 4,7 128 45
9 8,4 139 22 3,2 138 58 5,8 138 40

10 11 148 16 6,1 148 35 8,5 148 26
11 12 157 14 7,3 156 28 3,4 157 58 7,7 157 33
12 16 166 11 9,8 167 20 5,4 167 47 10,5 166 26
13 21 175 9,4 13,2 174 14 8,5 175 25 14,1 175 16
14 28 183 7,5 15,4 184 13 9,3 184 23 17,6 184 14
15 49 193 4,9 20,3 192 10 12,7 194 17 27,4 193 11
16 88 201 2,8 32,3 202 7,4 16,1 200 13 10,58 202 20 36,7 201 11
17 201 211 1,6 63,6 210 4,4 25,5 209 10 13,74 211 16 76,1 210 7,9
18 353 220 0,8 116 218 2,2 43,6 218 5,8 17,90 220 13 132 219 5,4

Avg. 51,3 151 16 22,6 165 30 15,6 188 25 14,07 211 16 25,9 179 22

VI. CONSLUSION
In this work the development of a new search index for the

approximate string search based in GiST was considered. The
new search index which allows searching in the domain of

strings S = (s1, s2, … sn) such si that levenshtein(si, p) ≤ d was
developed. The index testing with the English dictionary with
the volume of 61 505 words in the capacity of a data domain
was performed. The average speedup in the tests with random
distortions in existing words was 3.19 times. The average
speedup in the tests with random words was 25.88 times.

There are following directions of further researches:
 To research the developed index behavior on the different

data domains. To understand which domain can be used
with considerable performance improvement and which
is not.

 To improve the performance of the index. There are two
ways to improve the performance. The first way is to
change the implementation of some GiST interface
methods (in particular the PickSplit method). The second
way is to change the class of regular expressions used in
the capacity of tree node predicates.

 To apply the developed index for other search predicates.
These predicates are the following: predicate based on
the editorial distance different than Levenshtein distance,
the regular expressions in the capacity of search
predicate.

REFERENCES
[1] Douglas Comer, “The Ubiquitous B-Tree”, Computing Surveys 11(2),

June 1979, pp. 121–137.
[2] Antonin Guttman, “R-Trees: A Dynamic Index Structure For Spatial

Searching”, In Proc. ACM SIGMOD International Conference on
Management of Data, June 1984, pp. 47–57.

[3] Miller , and DJ Lipman, “Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs”, Nucleic Acids Res., Sep.
1997, pp. 3389-3402.

[4] Zemin Ning, Anthony J. Cox, and James C. Mullikin, “METHODS:
SSAHA: A Fast Search Method for Large DNA Databases”, Genome Res.,
Oct. 2001, pp. 1725-1729.

[5] Maria B. Chaley, Eugene V. Korotkov, and Konstantin G. Skryabin,
“Method Revealing Latent Periodicity of the Nucleotide Sequences
Modified for a Case of Small Samples”, DNA Res, June 1999, pp. 153-
163.

[6] Sun Wu, Udi Manber, “Fast text searching: allowing errors”,
Communications of the ACM, Oct. 1992, pp. 83 – 91.

[7] James L. Peterson, “Computer programs for detecting and correcting
spelling errors”, Communications of the ACM archive, Dec. 1980, pp. 676
– 687.

[8] Fred J. Damerau, “A technique for computer detection and correction of
spell-ing errors”, March 1964, pp. 171 – 176.

[9] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals”, Soviet Physics 10, 1966, pp. 707–710.

[10] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio, “Indexing methods
for approximate string matching”, IEEE Data Engineering Bulletin 24,
April 2001, pp. 19-27.

[11] R. C. Angell, G. E. Freund, P. Willett, “Automatic spelling correction
using a trigram similarity", Information Processing and Management
19(4), 1983, pp. 255-262.

[12] M. Kornacker, C. Mohan, J.M. Hellerstein, “Concurrency and recovery in
generalized search trees”, In Proceedings of the ACM-SIGMOD
Conference, May 1997, pp. 62-72.

[13] Paul M. Aoki, “Generalizing “search” in generalized search trees” in
Proc. 14th Int'l Conf. on Data Engineering, Feb. 1998.

[14] Robert A. Wagner, Michael J. Fischer, “The String-to-String Correction
Problem”, Journal of the ACM, Jan. 1974, pp. 168 – 173.

[15] Michael S. Waterman, “Introduction to computational biology: maps,
sequences and genomes”, 1995.

