
An approach to data validation based on
lifecycle-bounded metadata

Vadim Surpin

The Institute for information transmission problems of the
Russian Academy of Sciences (Kharkevich Institute),

Moscow, Russia

vadim@iitp.ru

Abstract – Data validation is known to be
the task performed in almost every business
application and occurs through almost all levels of
modern multi-tier application. Being a
crosscutting concern validation requires some
extra effort to make sure that it works right and
consistent in all tiers thus increasing time to test
the application and possible number of
application bugs. The article describes an
approach to describe complex lifecycle-bounded
validation in a declarative manner making it
reusable through the application.

Data validation is one of the most common
tasks in business application. Validation is a process
of checking that data conforms to constraints applied
to it and producing a list of validation messages that
clearly describe failed checks. Problem of data
validation attracts more attention since the time when
Model-View-Controller (MVC) [1] become a
standard for building modern application architecture.
Such layered code separation allows to build more
secure and scalable software but leads to undesirable
code duplication between layers. The validation code
is that one that being duplicated. It is being used in all
application layers from model to presentation
making a problem to coordinate validation rules on
different levels.

Last few years there are several attempts to
make data validation some more formal description
and establish a standard that describes data validation
approaches. There are several standards one of which
is JSR303 [2] if we look in the area of Java
technology [3]. The standard has a working
implementation, the one that was a prototype for the
standard. It is open-source project Hibernate
Validator [4] from the Red Hat company. High page
rank of the project official website in Google shows
interest of software developers to the data validation
problem. Here are some data validation approaches

referenced in the JSR303 standard and implemented
in Hibernate Validator project.

The standard based on idea of applying
constraints to object’s fields and offers to look at that
constraints as metadata bound to thу fields. The most
common constraints such as “not empty”, “not large
than N symbols”, etc. are supplied as out-of-the-box
implementation. Software developer may add some
more complex field constraints that conforms to the
standard. Every constraint may be associated with
one or more groups that allows to validate object
against several validation sets.

The approach described is suitable to
accomplish simple validation tasks when validation
constraint set isn’t vary very much. Such as in the
case of validating domain model objects before
they’re being send to persistence layer and database.
This peculiarity is due to tight integration between
Hibernate Validator that was the prototype for the
standard and Hibernate [5] object-relation mapping
solution. Being good at that field the standard doesn’t
address validation issues that exist in more complex
workflow-based scenarios where typical tasks are:

• Constraints on fields that depend on each
other

• Constraints on associated objects or object
graph

• Constraints that depend on the lifecycle
stage of the business object

• Constraints that depend on context
parameters

To deal with first and second problems it is
enough to allow object level validation and give a
developer possibility to implement validation logic as
a program code. This will give also an opportunity to
validate complex dependencies between object fields
and deep relationship between associated objects.

The lifecycle dependent validation is a common
case in application where two or more users work on
the same data. In such a case data travel from one
user to another in accordance with application
workflow, the data contained in the same business
objects grows along it’s way in workflow so it’s
consistency depends on the phase of the lifecycle.
This is the most common case for every quite
complex business application. To address this issue
clear principles of business object lifecycle
management should be described and implemented in
an application architecture.

The MVC architecture states that at least three
general classes of objects exist:

• Data access objects or domain-model objects
(Model)

• Business logic objects (Controller)

• User interfaces objects (View)

From the perspective of high level system
architecture interaction between these classes may be
presented as on the UML[6] diagram Fig. 1

The diagram shows that all data changes only
when it passes throw the methods of controller object
that implements business operations of the system.
This means that all object lifecycle-management
occurs when data goes across the border between
View and Controller layers where the View layer
initiates object state change based on the user request
and controller performs the requested business
operation. That’s why passing the boundaries
between View and Controller layers is a good place
to perform object validation. It solves at least three

problems from the validation field:

1. Assure that controller receives correct data
that won’t corrupt data storage integrity if
malicious data will be send by the user.

2. View layer is able to show validation
messages informing the user about mistakes
in just entered data in context of the
requested operation thus giving a developer
to supply more specific and clear validation
message compared to ones that can be
produced without this operation-context
dependency.

3. Forces consistency between data check on
View and controller layers by using the
Don’t Repeat Yourself (DRY) [7] principle
eliminating code duplication.

The approach suits well to the modern
application architecture where system modules have
to be terminated by well defined interfaces and the
module implementation is a “black box” for the
cooperating party. An amount of modern
programming languages have a notation of interface
in their syntax, e.g. Java language interface syntax
may look as follows:

@Remote public interface
BusinessOperationsRemote {

 void doSomething(T param);

}

The example of a simple business
component interface that uses Enterprise JavaBeans 3
(EJB3)[8] technology is shown. Here are it’s

Fig. 1 Interaction between MVC objects

meaningful parts:

1. @Remote – so called “annotation”, an
implementation of metadata facility from
Java technology. The annotation means that
the annotated interface belongs to a business
object which lifecycle is managed by an EJB
container and the interface methods are
accessible remotely by network calls.

2. void doSomething(T param) – business
method signature that states the method
returns no result and accepts a parameter of
type T.

When the component implementation is
accessible only to the container which manages that
component, it’s interface is visible to both component
implementation and client from the view layer which
calls business its methods. Keeping that in mind it
becomes clear that the interfaces are a proper place to
put method parameters validation metadata. The
metadata take a form of @Validator annotation on
the doSomething() method as follows:

@Validator(implementation=DoSomethingVa
lidator.class)

void doSomething(T param);

Referenced by the “implementation”
attribute class DoSomethingValidator implements the
doSomething() method parameters validation logic:

public class DoSomethingValidator
implements InputValidator {

 @Override

 public List<ValidationMessage>
validate(Object… params) {

 …

}

}

This class bytecode should be available both
on controller and view layers and can be shipped with
business interface description in the same deployment
unit. Having access to the BusinessOperationsRemote
business interface view layer can simply invoke
parameter validation just before the method call:

List<ValidationMessage> messages =
validator.validate(BusinessOperationsRe
mote.class, “doSomething”, param);

if(messages == null ||
messages.isEmpty()) {

 businessOperationsRemote.doSomet
hing(param);

} else {

 //Show validation messages to
the user

}

The solution described easy integrates with a
JSR303 standard-compliant validation using it’s
feature to set up validation groups for each object
property. These groups may be just fully qualified
names of BusinessOperationsRemote interface
methods. Such choice of group naming has an
advantage of hiding internal object lifecycle from the
interfaces client describing transitions between
lifecycle phases only in terms of business operation
invocations. This gives view layer object only the
required knowledge about object lifecycle and
removes the need to specify validation groups at view
layer. Spreading such information between layers
causes numerous errors due to module
miscoordintaion during system development process.
Miscoordintaion is impossible when using interface
level metadata because it can be detected on the
compilation stage by compiler error messages.

So the approach described solves the
problem of complex object validation in the process
of object lifecycle transition process in the way clear
to the developer. It coordinates check being
performed at differed layers of a multi-tier
application and refactoring-friendly since it describes
all it’s metadata using language syntax available to
the compiler. These simplifies software development
that involves data validation facilities (a great part of
modern software) and decreases number of hardly
testable logical errors in the application design that
occur when validation code at different layers gets
miscoordinated.

REFERENCES

1. Design Patterns: Model-View-Controller,
Java Blueprints,
http://java.sun.com/blueprints/patterns/MVC
.html

2. Java Specification Request, JSR303,
http://jcp.org/en/jsr/detail?id=303

3. Java Technology, http://java.sun.com
4. Hibernate Validator Project,

https://www.hibernate.org/412.html

5. Hibernate ORM,
https://www.hibernate.org/344.html

6. M. Fowler “UML Distilled: A brief guide to
the standard object modeling language”,
Addison-Wesley Professional, 2003.

7. William Crawford, Jonathan Kaplan “J2EE
Design Patterns”, O'Reilly Media, 2003

8. Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/

