Test suite development for conformance testing of email protocols

Nikolay Pakulin
ISP RAS

npak@ispras.ru

Abstract—The method for testing electronic mail protocols
in the Internet to conform to the standards based on
formal specifications is presented. The method is based on
automated testing technology UniTESK in which functional
requirements are formalized as pre- and postconditions and
test sequence is generated on-the-fly from finite state machine
(test state machine) traversal. The method is illustrated by
the test suite development for SMTP and POP3 protocols
using JavaTESK - a specification extension of Java language.

Keywords-formal specifications; model based testing; pro-
tocols testing; conformance testing.

I. INTRODUCTION

Emails are fundamental to modern communications
between people. Hundreds of millions of emails float every
day around the Internet. Reliability and correctness of the
emailing infrastructure is vital to the modern information
society. In this article we concern two aspects of these
questions — reliability of (1) mail transfer in the Internet
and (2) delivery of the email to recipient, typically a
human being.

Most of emails in the Internet are transferred by means
of SMTP - Simple Mail Transfer Protocol [1]. It is
a text-based protocol with two parties: a client and a
server. Client issues commands and server executes them,
returning status code and other details if needed. SMTP
has its own overlay network over Internet comprised by
numerous mail servers and relay agents used to forward
emails between various domains. A feature of SMTP is
that each physical server could operate as both SMTP
client and SMTP server: being a server it accepts an
incoming email and becomes a client to forward it to a
next hop.

SMTP is used to send messages, but when an SMTP
implementation identifies that this is the final destination
of an email it stops forwarding the mail and places it in
an internal (implementation-specific) storage. To retrieve
emails from the storage end-users utilize other protocols:
POP3 (Post-Office Protocol, version 3 [2]) or IMAP4
(Internet Mail Access Protocol version 4 [3]). Both pro-
tocols are text-based with distinct roles of a client and a
server. Clients access storage issuing protocol commands
and servers provide required information in their replies.
Typical POP3 and IMAP4 implementations support only
one role at a time.

On its way from the originator to the recipient an email
is processed by a number of intermediate servers. A typical
case is that those servers come from different vendors thus
having different implementations of the email protocols.

Anastasia Tugaenko
ISP RAS

tugaenko @ispras.ru

The total reliability of emailing infrastructure substantially
depends on the reliability of each server in the way and
the compatibility between implementations.

Nowadays protocol conformance testing is the basic
method of attesting implementations compatibility. That
rationale for this statement bases on the suggestion of
good protocol quality: if two implementations confirm to
a protocol specification then they are compatible, they can
correctly communicate with each other.

Despite of more than twenty-year history of
mail protocol service and existence of dozens of
SMTP/POP3/IMAP4 implementations there are no open
and implementation-agnostic conformance test suites for
those protocols. We believe that there are several reasons
of this.

First, the simplicity of mail protocols is seeming. Let’s
explore the mail protocols features in the context of
testing:

1) Mail protocols are underspecified: a large part of
functionality is left to implementation developers;
specifications prescribe several variants of possible
system behavior;

2) mail protocols are nondeterministic, the standard al-
lows various system behavior alternatives including
refusal in mail message delivering or connection
tear;

3) mail protocols requirements differ in the level of
obligations (MUST, SHOULD, MAY);

4) protocol architecture is extensible, protocols imple-
mentation may use different extensions for supple-
mental functionality or even overlapping functional-
ity.

Listed features demonstrate complexity of the task of

conformance test for email protocols.

Second, developers has to focus testing on another big
issue of mail server development: processing of a large
number of settings necessary for practical use — parameters
of routing, authentication, security, mail messages deposi-
tory etc. We studied test suites developed by several open
source implementations. The test suites turned out to be
tightly coupled with the implementations under test (IUT)
and non-portable to servers from other vendors, they use
testing implementations features setting parameters, ac-
cess to internal state, execution in the same process as the
implementation. Tests designed for one implementation
could not be applied to other implementations. Moreover,
as shown by the analysis, these tests are inappropriate for



conformance testing, they are oriented to checking im-
plementation for numerous settings correctness that don’t
directly connected with SMTP and POP3 standards. The
problem is that such approach to testing doesn’t guarantee
servers’ compatibility to the standard. The situation is
even worse — our conformance tests detected a serious
functional defect in James server — cycling at certain
conditions — that was overlooked by the James functional
tests.

Also it is necessary to note that there is a special tool de-
veloped in Apache Project — Mail Protocol Tester (MPT) —
for verifying correctness of server replies. The input
data for this tool is a script that specified server stimuli
and expected server replies. The program uses regular
expressions for comparison of IUTs replies and expected
replies from defined scripts. If reply mismatches program
stops and throws the mistake message. Apache James MPT
does not support branching, cycles and parameters usage
in tests.

Exact relationship between tests and standard’s require-
ments allows hard confidence estimating in terms of
external user of mail service. As the example with server
James shows, the thoroughly testing of internal functions
of implementation doesn’t guarantee the functional quality
of implementation in real environment.

Proceeding from the above arguments, we believe that
the problem of conformance testing to the standards of
mail protocols has significant practical importance. The
ultimate goal of our research is to develop an opensource
general-purpose conformance test suite for SMTP, POP3
and IMAP4. In this paper we present a model-based
approach to conformance testing of email protocols. The
presented approach focuses solely on conformance and
does not consider other aspects of email infrastructure
validation, such as interoperability testing, performance
testing, reliability testing etc.

The paper is structured as follows: section II gives
an overview of the existing approaches to protocol con-
formance testing and discusses why model-based testing
is used in our approach. Section III provides a quick
introduction to UniTESK technology that lays in the basis
of our approach and Section IV introduces the proposed
test development process. In section V we present the test
suite for SMTP and POP3 developed so far and Section VI
discusses pros and cons of the proposed approach. Section
VII summarizes results achieved by now and highlights
directions of future research.

II. MAIL PROTOCOL TESTING

In the contemporary industry conformance testing of
protocol implementations is mostly based on manual de-
velopment of test suites consisting of independent test
programs written in specialized or general-purpose pro-
gramming language. Such programs are referred to as test
cases; they implement stimulus test sequence generation,
passing generated test inputs to the IUT, reading and
analysis of observed outputs [4].

Let’s consider requirements for test suite. Test suite for
conformance testing must possess the following proper-
ties:

1) Requirements traceability. Tests must correlate with
standard requirements. It must be clear for each
requirement which test it is covered by.

2) Variety of settings for implementations features
(MUST, SHOULD, MAY and others). There must be
an option to define the set of requirements supported
by an IUT and avoid requirements that IUT does not
implement.

3) Completeness of test suite in terms of requirements
coverage. Resulting test suite must cover at least all
obligation requirements.

Test cases approach doesn’t provide evident traceability
of requirements. Requirements completeness in terms of
coverage in such approach is also complicated. We re-
jected TTCN3 [5] and JUnit [6] because they don’t provide
formal connection between tests and requirements.

Besides that large number of tests presented as separate
programs results in code redundancy or complex and
complicated connections. It is necessary to use methods
permitting decomposition of test suites and providing
requirements traceability.

Required possibilities are given by tools based on for-
mal method approach. Utilizing of formal specifications
allows to:

1) define formal connections between requirements and
tests; automatically backtrace quality of testing in
terms of specification coverage;

2) using model repeatedly for checking correctness of
implementations behavior;

3) generate test stimuli in terms of model and automat-
ically filter redundant stimuli.

Also when choosing a method for generating test se-
quences it is necessary to take into account features of
mail protocols. Particularly because of protocol behavior
is nondeterministic and underspecified, one should choose
approaches providing test sequences generation with a
glance of IUT replies. As well when testing mail protocols
it is complicated to make prediction for result or define
equivalence of traces. Automatic verdict generation from
specifications postconditions may solve the problem of
verifying correctness of IUT behavior.

There are many instruments and approaches for testing.
NModel [7] represents model system in C# language and
provides basic facilities for on-the-fly testing and coverage
maximization. But for on-the-fly testing test developer
must write separate program describing complex traversal
strategy. The current stable version of SpecExplorer [§]
doesn’t support on-the-fly testing.

Toolkits UniTESK [9] and Conformiq Qtronic [10]
support formal specifications notation, automated on-the-
fly test stimuli generator (code-level, there is no need
to write separate program) and automated test results
analysis. For this project the UniTESK was selected.

In the UniTESK technology formal specifications which
formalize requirements as pre- and post- conditions are



used for generation of test sequences. Also for test se-
quences generation must be given a certain finite state
machine (test state machine). The test process in UniTESK
is automatic traversal of test state machine in which IUT
behavior is automatically verified by test oracles; test ora-
cles are generated from formal specification. The utilizing
of formal specifications allows automating verification of
behavior correctness and estimation of hard confidence;
presenting test as state machine makes possible to au-
tomatically generate long and various sequences of test
events.

Authors used presented method for developing test
suites for protocols SMTP and POP3. From tools imple-
menting the UniTESK approach JavaTESK [11] was cho-
sen. JavaTESK uses the programming language Java with
a number of extensions for record formal specifications
and specify tests.

III. UNITESK TECHNOLOGY OVERVIEW

The standard format for Internet protocol standardized
documentation is defined by documents RFC (Request for
Comment). Requirements in these documents are stated
in English and correspond informal text that describes
desirable system behavior. In the UniTESK technology
(Fig. 1) specialized specification languages — extensions
of Java and C — are used for record requirements. In this
work was used Java extension JavaTESK.

Test Engine

A

Test Sequence Iterator

A

Target System

Fig.1. UniTESK Test Architecture

Recording the informal requirements of standardized
documentation in formal language represents the proto-
col model. In UniTESK approach the formal model is
constructed in terms of finite state machine. Transitions
between states may be given in explicit or in implicit
way. In case of explicit definition of transition the model
contains algorithm for calculating next state and protocol
reaction. Presentation of implicit transition is a predicate
which defines restrictions on acceptable states and protocol
reactions.

Specification in JavaTESK usually consists of one
or few specification classes which describe states and
transitions of modeling protocol. Protocol transitions are
presented as special methods (specification methods). In
addition there is a possibility to define restrictions on
acceptable set of states by means of type invariants (type
restrictions) and state variable invariants.

Definition of implicit transitions realized as pre- and
postconditions. In preconditions there are restrictions on
acceptable stimulus parameters values and on states from
which stimuli may be given. The IUT may react on stimuli
by changing state, giving a reaction or both. Postconditions
define acceptability of demonstrated behavior.

For modeling IUT behavior one uses the set of data
structures which referred to as abstract states. For verdict
pronouncement about the correctness of IUT behavior
UniTESK uses data from model abstract state.

In UniTESK both stimuli for the IUT and its reactions
are described in terms of model; model is defined by the
formal specifications. Correlation between the model and
the IUT is established by an intermediary — mediator —
which translates stimulus parameters from model form to
protocol messages, IUT reactions to model representation
and if necessarily transports changes from the IUT state
to the abstract state.

Test scenario defines stimulus sequence applied to IUT.
The metamodel of finite state machine is used as the
theoretical basis for constructing scenarios. In JavaTESK
test state machine is defined in scenario class which
contains the procedure for calculating current state and
iterator of test stimuli. The JavaTESK tool contains test
engine for constructing test stimuli sequences from test
state machine description.

IV. THE PROPOSED METHOD FOR MAIL PROTOCOLS
CONFORMANCE TESTING

Mail protocols may be in several states. When receiving
certain stimulus they generate and send reactions and jump
to another state or leave in current. With a glance of
this fact on the basis of instrument UniTESK the method
for testing mail protocols was developed. The developed
method contains the following main steps:

1) Analysis of knowledge domain. Developing of ex-
amples and elementary tests. This step doesn’t give
any visible results but it is important for detailed
protocol understanding and helps in implementation
of next steps.

2) Creation of requirements catalogue. Requirements
catalogue is a database or a table with description
of requirements. Catalogue’s record contains not
only requirements description but also requirement
identifier, type (syntax or functional), severity, link
to the place in the RFC and maybe other attributes.

3) Designing of lite protocol model. Creation of ex-
perimental tests — test state machines with only
one state. Lite protocol model includes informa-
tion about commands and about possible reactions
to these commands. Experimental test consists of



specification, mediator and scenario classes. Speci-
fication class on this step includes only signatures
of methods; all verifications are making in scenario
class. Such test referred to as linear test; applying
stimuli and reading reactions are process in certain
order defined in scenario class.

4) Designing of conceptual protocol model. Extracting
states of basic protocol. Creation of test state ma-
chines with dedicated states. Expanding experimen-
tal test — addition the block which makes transitions
between states. Conceptual model defines behavior
of observing system as operations on some set of
abstract components and composing objects. These
components are used only for behavior modeling
and may not conform to the model extraction. Addi-
tion of block for making system transitions between
states turns test from linear to automatic test. In
this test construction of stimulus sequence is made
from test state machine traversal; applying stimuli
and reading reactions are made only from acceptable
states.

5) Requirements formalization. Relocation of verifi-
cation of IUT responses into specification class.
Checking completeness and consistency of require-
ments is made while formalizing requirements. The
result of this step is the formal protocol specification
written on one of the special program languages. In
our case the Java extension JavaTESK was used.

6) Enhancement of scenario and specification for cov-
ering all requirements. In this step scenario classes
contain only stimuli. The order of stimuli is formed
from state machine traversal and depends on apply-
ing stimuli in certain states conditions. Usually one
scenario class is responsible for the certain require-
ments section. For covering all formal requirements
few scenario classes may be needed.

7) Execution of test suites and analyzing the results.
Analysis may show that not all requirements are
covered by generated test suite. If not all require-
ments are covered then step 6 must be repeated until
covering all requirements from catalogue.

V. METHOD APPLICATION FOR PROTOCOLS SMTP
AND POP3 TESTING

The first step in writing tests for SMTP and POP3
implementations was analysis of knowledge domain, send-
ing emails directly from server console. Then the re-
quirements from RFCs were marked and categorized for
types: commands and replies, routing, notifications, server
settings, mail headers, mail body, etc. On this basis the
lite protocol models were designed; test state machines
consisted of only one state from which sent commands (for
SMTP: EHLO, HELO, MAIL FROM, RCPT TO, DATA
and others, for POP3: USER, PASS, LIST, STAT, RETR,
DELE, TOP and others), received replies (for SMTP:
three digit numeric code — reply code, for POP3: ”+0OK”
or ”-ERR” replies) and left at the same state. On this
step implementations of test suites generation had a for-

mal interface, specification classes was consisted of only
methods’ signatures; all [UTs behavior correctness verifi-
cations were made in scenario classes. Scenario classes
consisted of methods applying (by means of mediator
classes) stimuli to the IUTs, reading servers responses and
returning verdicts about correctness of severs behavior.
Mediator classes transformed the IUT stimuli format to
model systems format and vice versa.

Then the basic protocol states were marked. On this step
the new blocks responsible for making model system’s
transitions between states were added to the scenario
classes. Specification classes were not changed.

In the next step blocks responsible for verification of
IUT behavior correctness and blocks that make transi-
tions between systems states were relocated from scenario
classes to specification ones. Scenario classes solely ap-
plied stimuli to the IUT. From now certain commands
could be passed only from acceptable states of state
machines. The possibility of such verification is achieved
by recording acceptable states in preconditions of speci-
fications. Iterator every time checks the current state and
whether the applying of the next command is allowed in
current state. Also it gives the opportunity to check the
fact that servers don’t send commands from forbidden for
such commands states.

VI. DISCUSSION

While testing systems it always necessarily to know
when testing may be considered as completed, what re-
quirements have already been tested and what require-
ments are to be tested. Test cases testing cannot answer
this question because correlation between tests and re-
quirements is given informally in form of traceability
matrix.

The utilizing of formal specifications allows formulation
the exact unambiguous hard confidence criteria — testing
may be completed when all elements of appropriate formal
specifications are covered. UniTESK uses procedure of
counting covered requirements and allows to define some
selecting criterion for scenarios — if applying of certain
scenario doesn’t increase test coverage then system misses
it and moves to the next scenario.

One of important advantages of this method is sepa-
rating the class in which makes the pronouncement of
verdict. The oracle which is generated from specification
postconditions is responsible for verdict pronouncement.
Due to this one hasn’t to invent special functions for
checking the correctness of IUT behavior.

To the lows of the method based on formal specifi-
cations one may attribute the absence of the quick test
suites updating ability. When testing in terms of test
cases new test results immediately from a simple test
program. When testing in terms of formal specifications
for developing new test it is necessary to thoroughly study
requirements, formalize and classify them. Only after
these preparations one may set out to write specification,
mediator and scenario classes. Through this the period for
new test development is increasing. But after specification,



mediator and scenario classes have written one got not a
single test but a set of tests responsible for corresponding
requirements class.

VII. RESULTS AND FURTHER RESEARCH

For protocol SMTP were marked 51 basic requirements,
43 of them are related to server commands and replies
(11 of them are mandatory and 4 are optional), 8 related
to routing (all are mandatory). For protocol POP3 were
marked 58 requirements for all functionality, 5 of them
are mandatory and 6 are optional. All marked requirements
are covered. Developed test suites were applied for testing
open source mail protocols implementations — Apache
James, hMailServer, Postfix and Dovecot. In the course
of testing the following disagreements between protocol
implementations and standards [1, 2] were detected:

« absence of required commands supporting;

e protocol rules violation (passing commands from
forbidden for such commands states);

o wrong reply codes to the protocol commands;

o cycling while redirecting mail.

The feature of mail protocols is that mail protocols
are extensible. Certain extensions supplement existing
functionality, i.e. add new requirements which are not in a
contrast with requirements from main standard. But there
are also such extensions which radically alter the protocol
structure thereby discarding some requirements from the
basic standard. For checking such extensions one should
modify test suites in such a way that requirements that are
amended by extensions have not been verified. Otherwise
there will be no opportunity to reach 100% coverage of all
obligatory requirements. In connection with many proto-
cols be extensible there is a need for tools providing ability
for generating test suites for testing different extensible
protocols’ implementations both supporting extensions
and supporting only basic standard functionality.

VIII. CONCLUSION

The paper presents a new approach to mail protocol
testing. The approach belongs to model-based testing do-
main, it uses contract specifications to formalize protocol
specification and on-the-fly test sequence generation. The
implementation of the approach is based on UniTESK
technology. Distinctive features of this method are au-
tomated test sequences generation on basis of formal
specifications, test coverage calculating which allows con-
structing stimuli in optimal way and also the presence
of separate component — oracle — responsible for verdict
about IUT behavior correctness returning.

Developed method was applied for testing of long used
mail protocols implementations. In one of the tested im-
plementations was found a critical defect — under specific
circumstances while redirecting message the server is
resending the mail to itself and the message never reaches
the recipient.

REFERENCES

[1] IETF RFC 5321. J. Klensin. Simple Mail Transfer Protocol.
2008.

[2] IETF RFC 1939. J. Myers, M. Rosem, Post Office Protocol
— Version 3. 1996.

[3] IETF RFC 3501. M. Crispin. Internet Message Access
Protocol — version 4revl. 2003.

[4] ISO/IEC 9646. Information technology — Open Systems
Interconnection — Conformance testing methodology and
framework — Part 1: General concepts. Geneva: 1SO, 1994.

[5] ETSIES 201 873-1 V3.1.1. Methods for Testing and Specifi-
cation (MTS); The Testing and Test Control Notation version
3; Part 1: TTCN-3 Core Language. Sophia-Antipolis, France:
ETSI, 2009.

[6] Unit testing framework [URL] http://www.junit.org/.

[7] Jonathan Jacky, Margus Veanes, Colin Campbell, Wolfram
Schulte. Model-based Software Testing and Analysis with
C#. Cambridge University Press, 2008.

[8] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wol-
fram Schulte, Nikolai Tillmann, Lev Nachmanson. Model-
Based Testing of Object-Oriented Reactive Systems with
Spec Explorer Microsoft Research, Redmond, 2007.

[9] A. Barantsev, I. Burdonov, A. Demakov, S. Zelenov, A.
Kossatchev, V. Kuliamin, V. Omeltchenko, N. Pakoulin, A.
Petrenko. UniTesK Approach to Test Development: achieve-
ments and Prospects. Proceedings of ISP RAS, No. 5, 2004.

[10] End-to-End Testing Automation in TTCN-3 environment
using Conformiq Qtronic and Elvior MessageMagic. 2009

[11] JavaTESK: getting started (in Russian). Moscow, 2008.



