
Program Demo

 Action 1

 Action 2

 …

End_of_program

Program Demo

 Unit 1

 Unit 2

 …

End_of_program

Program Demo

Unit 1

 Call the unit from library

 Unit 2

 …

End_of_program

Macromodule technology

Victor P. Gergel, Alexey Sidnev

Computational Mathematics and Cybernetics department,

N.I. Lobachevsky State University,

Nizhny Novgorod, Russia

e-mail: alexey.sidnev@itlab.unn.ru

Abstract— A development of the parallel, optimal and portable

software is a difficult problem. It consists of learning of

libraries, programming techniques (such as optimization and

paralleling), usage of the libraries and modification of written

code. At present there is a set of the optimized libraries for the

big number of tasks. But each library is unique, it demands

studying and is optimized for specific software and hardware

systems. It complicates a choice of the most suitable library (or

several libraries) for usage and implementation in the

developed software. In this paper, we propose approach for

solving the specified problems. The main idea of the approach
is the semantic description of programmed code.

Keywords-macromodule technology; semantic description of

code

I. INTRODUCTION

Recently software development has accepted mass
character, being hard professional work. Development of
parallel programs for high-efficiency computing systems is
much more difficult. The main complexity of it consists of
learning of libraries, programming techniques (such as
optimization and paralleling), and usage of the libraries and
modification of written code.

In general, the computer program represents sequence of
operations which computer has to execute (Fig. 1).

Figure 1. The common view of the program

In most cases, separate small operations can be merged in
the larger units. In that case the modular representation of
program looks like on Fig. 2.

Programs can consist of much number of units. It is
possible to select some standard units which describing
solutions of some typical tasks among them (an ordering of
the data, search of the minimum or maximum value, etc.).
These standard units can be developed, placed in libraries of

standard units and used. In this case programs look like on
Fig. 3.

Figure 2. Modular representation of the program

The similar technology – usage of libraries – is one of the
main in a software development. This approach has many
advantages. Such as quality implementation of the standard
units, essential decrease development coast. At present there
is a set of libraries solving tasks of linear algebra (library
LAPACK, ATLAS), many-dimensional multicriterion
optimization, fast Fourier transform (library FFTW, MKL),
etc. There are a number of problems at the library approach.
First of all, the programmer has to know a lot of existing
libraries. He must know the structure and the rules of usage
of the library, because each library is unique. It is difficult to
overcome such problems. It is hard to provide portability of
programs (work of programs in various hardware and
software conditions). In this case, upgrade of programs with
replacement of used library units is usually required.

In this paper we propose the technology of
macromodular software development which decreases
complexity of programming.

Figure 3. Modular representation of the program with usage of libraries

II. MACROMODULAR TECHNOLOGY

A. General Overview

The main idea of the macromodular approach is the
semantic description of programmed code. It is performs
description analysis and automatic assembly of optimal

#pragma mmt mmult(A=Matrix<CStyle, float>(n, n), B=Matrix<CStyle,

float >(n, n), C=Matrix<CStyle, float >(n, n))

{

for(i = 0; i < n; i++)

 for(l = 0; l < n; l++)

 for(j = 0; j < n; j++)

 C[i*n+j] += A[i*n+l] * B[l*n+j];

}

for(i = 0; i < n; i++)

 for(l = 0; l < n; l++)

 for(j = 0; j < n; j++)
 C[i*n+j] += A[i*n+l] * B[l*n+j];

application for target software and a hardware platform
(portable, parallel or for the specialized processor). Thus the
basis for assembly is debugged and optimized libraries. The
software developer does not choice the most suitable library
and does not write code to use that library. It is enough to
make the macrodescription of a program code and to specify
a target platform. Modification of the program under new
software and a hardware platform is simplified. It is enough
to rebuild the application.

First of all, programmer writes description of code. It
consists of action specification, data storage format and so
on. Description based on language syntax rules such as
preprocessor directives. Preprocessor is a program that
processes the code before it passes through the compiler. So
it can transform program before actual compilation. After
that the programmer selects target software and hardware
platform and perform assembly of optimal application.

B. Usage Example

As an example we will consider a problem of matrix
multiplication [1]. It is popular enough problem. It finds
application in problems of a computer graphics, physicists,
etc. Matrix multiplication is realized in many libraries
(LAPACK, ATLAS, MKL). The example will be considered
on the C language.

The implementations of square matrixes multiplication is
presented on the Fig. 4. Matrixes A and B are initial
matrixes. In matrix C the result of multiplication is stored.

Matrix multiplication is a simple enough task but it is
necessary to know:

 Matrixes size.

 Type of matrix elements. It can be simple type (for
example, integer type or float type) or complex type
(for example, complex number).

 Data storage format. It can be dense representation
(in the rows or columns) or sparse (Compressed
Row Storage, Compressed Column Storage, Sparse
Block Compressed Row Storage, etc) [2].

Figure 4. Classic matrix multiplication

Macromodular technology uses preprocessor directives
for tasks specification, such as matrix multiplication. We will
use special directives, named pragmas. Pragmas are the
preprocessor instructions, so they are processed before a
compilation stage. It often controls actions of the compiler
and linker. All unrecognized pragmas are ignored. For
example, OpenMP parallel programming model is based on
pragmas [3].

Directives of macromodular technology describe the
block of code and have the following format: “#pragma mmt
<action>(<parameters>)“. <Action> is an operation which

performs in the specified block, for example matrix
multiplication. <Parameters> are input and output arguments
of the computing function. Description of matrix
multiplication is presented of Fig. 5.

All matrixes in the example are square, have type of
elements “float” and have dense representation in memory
(so-called style C).

C. Target Platforms

We consider CUDA (toolkit version 2.3) [4] and MKL
(version 10.0.5.025) [5] libraries. MKL is a library of
optimized and threaded math routines for science,
engineering, and financial applications that require
maximum performance. CUDA is a library for GPU allows
developing the programs for nVidia video cards.

Available set of libraries is the basis for select of the
target platform. If target system is GPU oriented (has a
powerful graphics card) it is more preferable to use CUDA.
If target system is CPU oriented (has a powerful processor of
Intel) it is more preferable to use MKL.

The operating time of matrix multiplication (type “float”)
on various platforms is presented on Fig. 6. The first
platform has two quad cores Intel Xeon E5320 processors,
but very slow integrated video card. The second platform has
GPU GeForce 8800 GTS and dual core Intel Core 2 E6650
processor.

On the second platform, performance of matrix
multiplication on the GPU is more effectively, than on the
processor. First platform with two quad cores processors
have shown the best result. On the first platform, GPU does
not support general computation. So libraries have various
effectiveness on different platforms.

D. Current Research

Development of a prototype of the system supporting
macromodular technology is at present carried on. A
development of the extension for Visual Studio 2008 [6] is
now finished. It allows performing preprocessing of a
program and a choosing of a target platform.

Figure 5. Macromodule definition of matrix multiplication

Unit name: SortData

Purpose: Data ordering

Input data:

- Number of the ordering data

- Initial data

Results:

- Ordered data

Library 1

Library 2

Library n

Abstract

unit 1

Abstract

unit 2

Abstract

unit k

Interface ImplementationMain program

(user code)

Choice of target

platform

Figure 6. Compare CPU and GPU performance on different platform

III. SUMMARY

The main idea of the macromodular technology is the
semantic description of programmed code. It is performs
automatic assembly of optimal application for target
software and a hardware platform. Thus the basis for
assembly is debugged and optimized libraries. The software
developer does not choice the most suitable library and does
not write code to use that library.

The main ideas of macromodular technology of software
development are:

 Standardization of rules of standard unit’s usage (the
unit name, assignment, the input data and received
results). Standard implementation of units is not
fixed, so it is defines abstract units. Definition of the
abstract unit can be such as on Fig. 7 (on an example
of the data ordering). Standardization of abstract
units is regulated and it is reported to software
developers.

 The extension of standard modules by the available
units in libraries (for each unit of library the abstract
unit is indicated). Generally, for one abstract unit
there can be some implementations in various
libraries of standard units (Fig. 8).

 Modular development of programs with usage of
abstract units (thereby, the developer should know
only definition of abstract units, instead of set of
their various implementations).

 Automated choice of implementations of abstract
units used in programs. Automation process include
the analysis of libraries available in the environment
and a choice of the best implementation of abstract
units from available set, usage of concrete
implementations of abstract units and construction of
a final version of programs.

The main advantages of the offered technology are:

 Standardization of the standard units, selected in
development process of programs.

 Essential decreasing of practical usage complexity of
all set of various implementations of standard units.

 Considerable decreasing of software development
complexity – at accumulation of sufficient size of the

standardized descriptions of computer data
processing.

Appreciable improvement of programs portability
between various hardware-software platforms, the localized
implementations of programs can have high working speed
in the presence of the effective-developed programs.

Figure 7. Abstract unit definition of a data ordering

Figure 8. Common view of macromodule technology

REFERENCES

[1] Knuth, D.E. The Art of Computer Programming Volume 2:

Seminumerical Algorithms. Addison-Wesley Professional; 3 edition.
November 14, 1997. pp. 501.

[2] John R. Gilbert, Cleve Moler and Robert Schreiber. Sparse matrices

in MATLAB: Design and Implementation. SIAM Journal on Matrix
Analysis and Applications 13 (1), 1992, pp. 333–356.

[3] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J.

McDonald, Parallel Programming in OpenMP. Morgan Kaufmann,
2000.

[4] NVidia CUDA. Reference Manual. Version 2.3. July 2009.

[5] Intel® Math Kernel Library. Reference Manual. September 2007.

[6] Craig S., Marc Y., Brian J. Working with Microsoft® Visual Studio®
2005. Microsoft Press.

