
Contract Specification of Hardware Designs at
Different Abstraction Levels: Application to

Functional Verification
Mikhail Chupilko and Alexander Kamkin

Institute for System Programming of the Russian Academy of Sciences
25, A. Solzhenitsyn st., Moscow, 109004, Russia

E-mail: {chupilko, kamkin}@ispras.ru

Abstract— The paper touches upon the issues of functional
specification and verification of digital hardware at different
abstraction levels. It shows how behavioral models of various
degrees of abstraction can be represented by means of the
contract paradigm and how contract specifications can be applied
to generate test sequences in an automated way. The testing
technique under consideration is based on the traversal of FSM
derived from specifications. Taking into account that contract
specifications are well known to be a high-efficient tool for
constructing response checkers and estimating test coverage,
we can assuredly report that the contract-based approach is a
universal solution for hardware verification at different levels of
abstraction.

I. I NTRODUCTION

Automation of hardware design verification is feasible only
if requirements to hardware are represented in a formal way.
This refers not only to formal methods where using mathemati-
cal models is one of the integral parts but to simulation-based
methods as well. Requirements being represented formally,
i.e., in a machine-readable form, are calledformal specifi-
cations. Basing on such specifications one can automatically
derive a design model (usually, some kind of automaton) and
apply it to functional verification (e.g., to generate stimuli,
check reactions, or estimate test adequacy).

When verifying hardware of different size and complexity
it is reasonable to use specifications and models of different
levels of abstraction. For example, a hardware unit can be
specified cycle-accurately, while description of a whole system
can be done in a more generalized manner. Choice of an
abstraction level depends on the requirements to be specified
(they are not always very accurate) and in many cases is
conditioned by reusability and maintenance reasons – more
accurate specifications are, less reusable they are, and more
labor-consuming their maintenance is.

Nowadays, there are lots of specification-based techniques
for functional verification of hardware, but there is a lack of
unified solutions, which are applicable to various abstraction
levels, e.g., contemporary unit and system verification methods
are completely different. This paper classifies the modeling
levels used in hardware verification and considers how diverse
models can be uniformly described with the help ofcontract

This work was supported by the RFBR (grant 08-01-00889-).

specifications(i.e., pre- and post-conditions) and how such
specifications can be used to automate simulation-based veri-
fication (test sequence generation, in particular).

The testing technique concerned is based on the traversal
of FSM constructed from contract specifications. It is obvious
that specifications of different size and accuracy produce
different automata in terms of determinacy and number of
transitions. It is not always possible to make use the derived
FSM model due to the huge size or for some other reason.
To make the model useable for test generation, one should
generalize it. Doing this involves many factors and mostly
remains the art of verification. Some of the approaches to
construct automata from specifications are described in the
paper.

The rest of the article is organized as follows. Section II
reviews the papers devoted to specification-based verification
of hardware designs. In Section III classification of the ab-
straction levels used for hardware modeling is given. This
section also describes how various models can be represented
by means of contract specifications. In Section IV construction
of FSM from contract specifications (to be afterwards used
for test sequence generation) is considered. Section V gives
a concise description of tool support. Finally, Section VI
concludes the paper and outlines the directions of our future
work.

II. RELATED WORK

There are lots of research and industrial papers on
specification-based verification methods. This gives evidence
that using formal specifications and models is a right direction
for hardware verification. The main question is what kind of
specifications and models are preferable. To automate different
tasks of testing, distinct types of models are usually used.
For example, stimuli generation can be performed on the base
of FSM models, while correctness checking can be done by
means of temporal assertions. This has a certain disadvantage.
Two models require maintenance during the design process to
keep up their mutual consistency.

The most of the papers are dedicated to the methods of
test sequence generation. Many of them suggest using explicit
cycle-accurate models to generate test sequence, e.g., Ur et
al. [1] and Mishra et al. [2], [3], [4] use SMV models; Ho



et al. [5] utilize Synchronous Murϕ. The main differences
between the approaches are concentrated in the following
methods: a model construction method (manual develop-
ment [1], automatic derivation from an RTL description [5],
and automatic derivation from specifications [2]) and a test
sequence generation method (FSM traversal [1], [5] and model
checking [2], [3], [4]).

Manual development of a model is error-prone, while au-
tomatic derivation from an RTL description does not scale
well on complex hardware designs. In our opinion, the most
promising method of model construction is automated extrac-
tion from formal specifications. Speaking about test gener-
ation, model checking techniques are not intended for full-
scale functional verification. They are aimed to verification of
a relatively small number of properties. The most usable way
of test sequence generation is based on FSM traversal.

In the suggested approach, a model for test sequence
generation, so-called generalized FSM model, is almost au-
tomatically derived from specifications. The approach uses
implicit specifications in the from of pre- and post-conditions
and irredundant algorithms for FSM traversal. The distinction
feature of the approach is that it does not require two different
models for checking design correctness and for test sequence
generation. All testing tasks are carried out basing on contract
specifications.

III. SPECIFICATION OFHARDWARE DESIGNS AT

DIFFERENTABSTRACTION LEVELS

When specifying hardware designs we mostly focus on
their behavior (functionality). In other words, hardware is
considered to be a black box with the given inputs and outputs,
and our goal is to specify the input-output relation of the DUV
(Design Under Verification).

It is widely recognized that EFSM (Extended Finite State
Machine) is one of the most natural formalisms for hardware
modeling [6]. It would be recalled that, roughly speaking,
EFSM is an automaton with parameterized inputs (stimuli)
and outputs (reactions) where state is divided into control and
data parts.

In this paper, it is implied that a functional model of
hardware is an EFSM-like automaton (formal definitions are
not given not to overload the paper). We distinguish the
following abstraction levels for hardware modeling (in order
of increasing abstractness):

• cycle-driven models:

– cycle-accurate models;
– adaptive cycle-driven models;

• event-driven models:

– ordered events models;
– unordered events models;

• operation-driven models.

Let us describe the basic properties of hardware models at
each of the abstraction levels given above.

Fig. 1. A control flow graph of an operation.

A. Cycle-Driven Models

Cycle-driven models are the least abstract and most detailed
ones. A model is calledcycle-drivenif each of its transitions
corresponds to exactly one clock cycle in hardware1. To
formally describe a cycle-driven model by means of contract
specifications, the operations implemented by a DUV should
be decomposed into a number of one-cyclemicro-operations
each being described by an individualcontract (i.e., a pre-
conditionandpost-condition). It should be noticed that micro-
operations of an operation can be connected to each other not
only by linear ordering but using more complex control flow
relation as well (see Fig. 1, for example).

Summing up, cycle-driven specification of an operation
includes its pre-condition (which constrains the situations in
which the operation is allowed to start), a set of interconnected
micro-operations, and pre- and post-conditions of the micro-
operations. Semantics of a micro-operation’s pre-condition
(which is also called aguard condition) differs from the
semantics defined for an operation’s pre-condition – if a guard
condition is not satisfied, it indicates that the micro-operation
is interlocked (it will be unlocked, when the guard condition
becomes true).

Cycle-driven models are subdivided into two types: cycle-
accurate models and adaptive cycle-driven models.

1) Cycle-Accurate Models: A cycle-driven model is re-
ferred to ascycle-accurateif for any admissible input sequence
it allows deterministically identifying (predicting) a DUV’s
reaction. In other words, it is a self-contained description
of the design cycle-by-cycle execution, which can be used
independentlyfrom the implementation (that is the difference
between accurate and adaptive models).

In a sense cycle-accurate models are ideal forco-simulation.
In each cycle a testbench applies an input both to a DUV and

1It does not make any serious difference whether a transition or staying in
a state corresponds to a clock cycle.



Fig. 2. Using a feedback for choosing a branch.

to a model and compares their outputs for equivalence. There
is no problem in determining when to apply a stimulus or
when to check a reaction – these actions are performed in
each cycle of simulation. However, making a cycle-accurate
model is a difficult task which is almost tantamount to writing
one more implementation.

2) Adaptive Cycle-Driven Models: Adaptive cycle-driven
modelsare not as self-contained and deterministic as cycle-
accurate models are. Sometimes they are not able to determine
a DUV’s reaction basing only on the input sequence, but it can
always decide which transition to perform observing some
outputs of the design. In other words, there is afeedback
from a DUV to a model (that is why such models are called
adaptive).

Due to the feedback adaptive models can not be used
independently from the implementation. Speaking in the terms
of contract specifications, micro-operations’ pre-conditions
and branching conditions can be defined not only over the
model variables (control and data state) but over the design’s
outputs as well (see Fig. 2). The post-conditions do not check
the values of the feedback outputs (DUV’s outputs the model
depends on).

Adaptive models are thought to be a bit more abstract than
accurate ones, because they abstract away the way in which
feedback outputs are calculated. When using such kind of
models there is a tacit assumption that feedback outputs are
computed correctly.

B. Event-Driven Models

Event-driven modelsare the next step in increasing ab-
stractness of the hardware functionality description. The key
distinction of that sort of models is that there is no rigid con-
nection between model transitions and clock cycles. Different
transitions (or stays in states) can take different amount of
time to be completed. Moreover, the same transition being
executed several times can take different number of cycles for
each execution.

The main concept of event-driven models is anevent,
which is an instantaneous interaction between a design and
its environment that can be observed or predicted. If we are
talking about verification, an event is an atomic interaction
between a DUV and a testbench (e.g., sending of a stimulus,
assignment of an output, etc.). A model is calledevent-driven
if its transitions are associated with events, not cycles (see
Fig. 3).

To specify an event-driven model by means of contract
specifications, each operation is decomposed into a number of

Fig. 3. A transition in an event-driven model.

sub-operations(interactions). Further thoughts are very similar
to those that are applied to cycle-driven models – all sub-
operations are connected into a control flow graph, while each
sub-operation is specified by pre-and post-conditions.

Event-driven models are subdivided into two types: ordered
events models and unordered events models.

1) Ordered Events Models: An ordered events modelis
an event-driven model where each transition corresponds to a
set of simultaneous events or a linearly ordered set of events
happening at different times. It should be noticed that cycle-
driven models are a particular case of ordered events models.
Indeed, a clock cycle can be considered as a kind of event.

Event-driven models (including models of ordered events)
are usually adaptive, because in general case their behavior
depends not only on input events (stimuli) but on output
events (reactions) as well. To be able to use event-driven
models for simulation-based verification, one should develop
special testbench components that detect a DUV’s reactions
and transmit them into a model. Such components are called
catchers.

2) Unordered Events Models: In contrast to a model of
ordered events, each transition of anunordered events model
is associated with an unordered set of events. In other words,
using such kind of models we know which events have taken
place during a transition, but we do not know the linear order
of the events (because, for example, some events are not visible
or communication medium can change the order).

The distinctive feature of unordered events model is how re-
actions are checked. Since the events order is not fully known,
a testbench tries to create all admissible orders and check the
events’ post-conditions. This process is calledserialization. If
there is at least one sequence of events such that all the post-
conditions are satisfied, the overall reaction is considered to
be correct.

C. Operation-Driven Models

No research on hardware verification would be complete
that did not consideroperation-driven models. Such models
are the most abstract and described by a vacuous single-
state automaton in which each transition corresponds to an
operation call. Operation-driven models abstract away from
operations’ structure (micro- and sub-operations) and cooper-
ative execution of several operations.

Specification of an operation is a classical software contract
consisting of a pre-condition (which constrains the situations



in which the operation is allowed to start) and post-condition
(which constrains the expected results of the operation).

Operation-driven models are often applied to core-level
verification of microprocessors being done with the help of test
programs. The same programs are executed on a microproces-
sor RTL design and its instruction-level simulator (operation-
driven model). The results of the two models are compared
for equivalence.

D. Unified View on Hardware Specification

It is important that models of various degree of abstraction
can be specified in a unified way by means of contract
specifications. Contract specifications abstraction/refinement
is the topic of a separate research, but we can report that
changing abstraction level can be done almost seamlessly. To
illustrate the idea, let us consider a simple example. In the
example, a operation-driven specification is refined into cycle-
driven one by adding timing information without changing the
structure of the specification.

The code below (we use the language SeC, specification
extension of C) describes the functionality of an address
translation operation being implemented by a hypothetical
TLB (Translation Lookaside Buffer): if a virtual address is
invalid, then the outputerror is set to one; if the address is
valid but does not belong to the buffer, then the outputmiss
is set to one; if the address is valid and it belongs to the buffer,
then the outputpa is set to the resultant physical address.

specification void AddressTranslation(VA va) {
TLB *tlb = getDUV();

// Pre-condition of the operation

pre {
return true ;

}
// Post-condition of the operation

post {
TLBEntry *entry;

POST(tlb.out.error == !isValid(va));

if (!isValid(va)) { STOP(); }
POST(tlb.out.miss == !isHit(tlb, va));

if (!isHit(tlb, va)) { STOP(); }
POST(tlb.out.pa == translate(tlb, va));

STOP();

}
}

To simplify description, the specification uses two special
macroses,POST and STOP. The first of them checks the
predicate given and returnfalse if the predicate is not
satisfied. The second macros simply returnstrue.

The code below refines the given specification by adding
some timing information. This is done with the help of the
constructsCYCLEand PRE. Calling CYCLE leads to a one-
cycle delay.PREwaits until the condition given is satisfied.

specification void AddressTranslation(VA va) {

TLB *tlb = getDUV();

pre {
return true ;

}
post {

TLBEntry *entry;

// Post-condition of the micro-operation 1

POST(tlb.out.error == !isValid(va));

if (!isValid(va)) { STOP(); }
// One-cycle delay

CYCLE();

// Post-condition of the micro-operation 2

POST(tlb.out.miss == !isHit(tlb, va));

if (!isHit(tlb, va)) { STOP(); }
// Pre-condition of the micro-operation 3

PRE(tlb.out.ready == 1);

// Post-condition of the micro-operation 3

POST(tlb.out.pa == translate(tlb, va));

STOP();

}
}

IV. T EST SEQUENCEGENERATION AT DIFFERENT

ABSTRACTION LEVELS

The test sequence generation technique we use for verifica-
tion is based on the traversal of a control FSM derived from
specifications. The distinctive feature of the approach is that
it does not require explicit FSM representation – instead, the
only information it operates with is a traversed part of a state
graph, current state, and set of available stimuli. Using such
a technique implies that FSM being traversed is deterministic
(in some sense) and has a strongly connected state graph.

Specifications of different abstractness lead to different
automata in terms of determinacy and number of states.
Obviously, it is not always possible to automatically derive
a deterministic FSM with a rather small number of states –
sometimes a resultant automaton is nondeterministic; other
times it is of a huge size.

Thus, one should choose a right abstraction level and
given the abstraction level, construct a deterministic automaton
(trying to avoid redundant states, of course). This task is not
fully automated, but there are several empiric ideas (testing
patterns) that we would like to consider. These ideas basically
relate to the current state calculation function of the implicit
FSM representation.

A. Cycle-Driven Models

1) Stage-Based FSM: The most usable pattern of FSM
description for cycle-driven specifications is as follows. The
control state is represented as a set of simultaneously execut-
ing micro-operations (see Fig. 4). This approach is called a
micro-operation-based FSMor a stage-based FSM(stageis a
generalization of micro-operations and sub-operations).

If there are inter-operationdata dependencieswhich have
an influence on pipeline interlocks (there are nontrivial micro-



Fig. 4. Constructing a micro-operation-based (stage-based) FSM.

operations’ pre-conditions), the pure stage-based approach
does not work, because the resultant FSM is most likely
nondeterministic. In this case, an extended approach should
be used – an automaton state is not only a set of micro-
operations, but it also contains some control information
describing dependencies between operations. It is also sensible
to use timers (to make states describe not only a micro-
operations but time of their processing as well). More detailed
description of the approach is available in [8].

2) Resource-Based FSM: The other approach is called a
resource-based FSM. An automaton state represents not cur-
rently executing micro-operations but the resources allocated
by the micro-operations. This testing pattern abstracts away
from the particular operations processing by a design, but it
often requires additional work to make an FSM deterministic.

We distinguish some types of resources which hardware de-
signs usually contain: arbiters, FIFO-buffers, RAM-memories,
and data transfer channels. Each resource is specified with
an individual FSM, and each FSM is described implicitly
by defining a way for the resources state calculation. There
are some patterns for specifying states. For example, state of
an arbiter is often represented as a pair〈requests, history〉,
where requests are queries having been sent to the arbiter
during the previous cycle, andhistory is a finite sequence of
the recent arbiters decisions (it is used to calculate priorities
of the requests); state of a FIFO is usually described as a
number of entries in the buffer; and so on. Having got known
what kind of resources a DUV consists of, one is able to
construct a description of a total FSM by concatenating all
state calculation functions.

B. Event-Driven Models

The stage- and resource-based approaches can be also ap-
plied to event-driven specifications. In this case, sub-operations
(instead of micro-operations) are considered. In the stage-
based approach, an FSM state is a set of processing sub-
operations. In the resource-based approach, an automaton state
is a set of the resources allocated by the sub-operations.

C. Operation-Driven Models

Operation-driven specifications are not able to produce an
adequate control FSM due to the low informativeness (high

abstractness). In this case, combinatorial techniques are used
for test generation. The test sequences are generated by sys-
tematic enumeration of all feasible combinations of the given
operations, test situations (i.e., paths in control flow graphs)
and dependencies via shared resources. To reduce number
of tests, one can use heuristics, like operation factorization,
limitation of the number of dependencies, etc. [7]

V. TOOL SUPPORT

The suggested approach to specification and test sequence
generation is supported by the CTESK toolkit developed at the
Institute for System Programming of the Russian Academy of
Sciences (ISPRAS) [9]. This toolkit is originally intended for
testing software systems written in C, but it has been adapted
for verification of hardware designs.

CTESK uses SeC language for development of testbench
components. SeC is a C extension, which has additional con-
structs to define specifications, FSM-based test scenarios, etc.
Testbench functionality connected with functional verification
of hardware designs is implemented as a library extension of
CTESK.

VI. CONCLUSION

Contract specifications are applicable to a wide rage of
hardware including complex parallel-pipeline designs with
control flow branching and parallel threads inside individual
operations [8]. Their usage allows automating all tasks of
simulation-based verification. This simplifies maintenance of
functional tests and reduces verification efforts. The important
quality of contract specifications is that they can be easily
applied to functional verification of hardware at different
abstraction levels. Futher we are planning to do a research on
smooth changing of specification abstractness. Choosing right
abstraction level for verification is a problem which is really
hard to formalize. We believe that a tool that could change the
abstractness without changing the structure of specifications
would be rather useful for verification engineers.

REFERENCES

[1] S. Ur, Y. Yadin. “Micro architecture coverage directed generation of test
programs”. Proc. of Design Automation Conference, 1999.

[2] P. Mishra, N. Dutt. “Functional coverage driven test generation for
validation of pipelined processors”. Proc. of Design, Automation and Test
in Europe, 2005.

[3] H.M. Koo, P. Mishra. “Test generation using SAT-based bounded model
checking for validation of pipelined processors”. Proc. of ACM Great
Lakes Symposium on VLSI, 2006.

[4] H.M. Koo, P. Mishra. “Functional test generation using property de-
composition for validation of pipelined processors”. Proc. of Design,
Automation and Test in Europe, 2006.

[5] R. Ho, C. Yang, M. Horowitz, D. Dill. “Architecture validation for
processors”. Proc. of International Symposium on Computer Architecture,
1995.

[6] A. Petrenko, S. Boroday, R. Groz. “Confirming Configurations in EFSM
Testing.” IEEE Transactions on Software Engineering, 2004.

[7] A. Kamkin. “Combinatorial model-based test program generation for
microprocessors”. Preprint of ISPRAS, 2009.

[8] M. Chupilko, A. Kamkin. “Specification-driven testbench development
for synchronous parallel-pipeline designs”. Proc. of the NORCHIP con-
ference, 2009.

[9] http://hardware.ispras.ru


