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Abstract—Automata-based approach is often used for 
developing complex systems. Model Checking is commonly 
used to check conformance of the system against its 
specification. However, verification techniques don’t allow 
checking the system in whole, as system consists of not only the 
model, but also control objects, which are not suitable for 
model checking. In this paper we propose an approach for 
testing of automata-based programs. We use EFSM and 
contracts to extend model with specification requirements and 
we demonstrate how genetic algorithms could be used to 
automate generation of tests to find faults in the system in 
whole.  
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I.  INTRODUCTION 
Automata-based program consists of a finite state 

machine or any other (often more complicated) formal 
automata and number control objects, which the model 
interacts with [1]. The most commonly used technique for 
verifying automata-based programs is Model Checking [2] 
because it can be used with very high degree of automation. 
However Model Checking suits only for verification of the 
automata, but not the system in whole. Controlled objects 
behavior and interaction of the automata and their controlled 
objects are not checked in this approach. Therefore there 
could be undetected errors left in the automata-based system, 
even if the automata itself was successfully verified against 
its specification. 

In this paper we propose to use testing to check the 
automata-based system in whole. Software testing is 
normally a labor intensive and very expensive task. It 
accounts for about half of a typical software project life 
cycle [3]. This means that straightforward approach to 
testing, such as manual testing, is not the best option. 
Recently there has been much interest in automated test data 
generation [4]. Even though testing cannot guarantee the 
correctness of a program, large number of tests does 
contribute significantly to the identification and reduction of 
faults, improving the likelihood that the software 
implementation will succeed. Therefore this paper includes 
description of an approach for testing automata-based 
programs and a way to automate this process using genetic 
algorithms. 

We propose to use testing to check implementation 
conformance against its specification. Specification given in 

natural language is suitable only for manual testing. In order 
to automate testing process, specification must be presented 
in some formal way. In our approach we include as much 
specification as it’s possible in the automaton, so it would 
contain the instruments of its own verification. Finite state 
machines (FSMs) are commonly used for the purpose of 
automata description. However, a FSM can only model 
simple reaction of the system to its input events; variables 
and guard conditions on transitions are needed in order to 
model a system with complex behavior and data 
dependencies. Using extended finite state machines 
(EFSMs), which support variables and guard conditions, is a 
reasonable choice to describe some of the specification 
requirements in the automata. As it was proposed in [5] we 
use contracts [6] to include even more specification 
requirements in the automata. Having specification 
requirements included in the program makes it possible to 
automate checking of these requirements while test is 
executed. Moreover requirements can be used to aim test 
generation at detecting situations, when they are not fulfilled. 

There is one more reason to use EFSMs. Most programs 
are designed to interact with some environment: program 
receives events and input data; automata react to these events 
and produce some output data. In automata-based programs 
one uses controlled objects for this purpose: they receive 
events and provide input data, which can be used in automata 
in guard conditions on transitions or as other control object 
functions’ arguments. In EFSMs such data are represented as 
variables. Variable in EFSM could be internal, defined inside 
the EFSM itself, or external – received from the control 
object. During testing values of external variables can be 
provided by the test script. 

Considering the proposed description of model and its 
specification, we defined a test for automata program as a 
sequence of events and a set of external variables, which lead 
to specific sequence of transitions (transition path) of the 
automata. As opposed to the traditional approach, where test 
is a program code, we propose to describe automata test as a 
transition path, which is much closer to specification level 
and helps to shorten the gap between the specification and 
the implementation. Transition path which is interesting for 
test creation can be easily obtained from natural language 
specification, but to create test code we need to find 
sequence of events and set of variables, that would lead to 
the given path execution. Obtaining sequence of events for 
the path is straightforward. However set of external variables 



is not so easy to guess: one need to find set of values, which 
would satisfy all transition guards on the given transition 
path. We propose to apply genetic algorithms to find suitable 
values for external variables. 

Overall, this paper addresses number of problems: 
• propose an approach for testing automata-based 

programs; 
• automate test creation by providing a tool, which 

finds suitable sequence of events and set of external 
variables for a given transition path and generates 
test code; 

• automate validation of specification requirements, 
included in the automata, while executing tests; 

• attempt to generate tests that lead to violation of 
specification requirements and so reveal faults in 
implementation. 

The rest of the paper is organized as follows. Section II 
gives details on proposed approach for testing automata-
based programs. Section III describes genetic algorithm 
applied to find external variables’ values. Section IV tells 
about proof-of-concept tool being developed and preliminary 
results; Section V concludes. 

II. TESTING FOR AUTOMATA-BASED PROGRAMS 
The following approach for developing automata-based 

programs and creating test suites is proposed in this paper: 
1) During development include signifigant part of 

natural language specification in the automata, using EFSM 
variables, transition guards and contracts.  

Controlled objects also have specification and 
requirements for their inputs/outputs and interaction with the 
automata. All this specification requirements must be 
fulfilled during tests execution. Benefit of having controlled 
object specification included in the automata is that actual 
implementation of this controlled object becomes less 
significant for testing. Given the requirements for the 
object’s output, we can check, that automaton reacts well for 
any data that fulfils given requirements. And vice versa it’s 
acceptable if program fails for the data, which don’t fulfill 
the object’s specification. 

In our approach we use JML specification language [9] to 
enrich automata with specification requirements. JML is a 
design by contract approach and contracts in JML include 
preconditions, postconditions, and invariants. In our case, 
such contracts can be defined for automata states and 
transitions.  

2) From natural language specification select 
interesting scenarious for testing and present them as a 
sequence of transitions in the automata. 

We consider sequence of automata transitions (transition 
path in the automata) to be a convenient way to describe a 
test scenario, as this representation of test could be easily 
derived from a natural language description of a test 
scenario. 

There is number of researches available [7], [8] that 
addresses the problem of finding transition paths in EFSM to 
achieve selected coverage criteria (e.g. state or transition 
coverage in the EFSM). Such techniques can be successfully 

used together with manual test paths selection and, combined 
with the approach presented in this paper, could help to 
automate producing of valuable test suites. 

3) Find sequence of events and values of external 
variables, which would make automata program to execute 
the disired transition path. 

Automaton reacts to the events and perform transitions 
depending on the values of external variables used in 
transition guards. Representation of a test as a sequence of 
events and values of external variables is convinient to 
programmatically generate test code, but it has very little 
sense for a developer who works with specification defined 
in natural language. In our approach developer can describe 
test scenario in natural language first and then write it down 
in automata terms as a sequence of transitions, which is 
straightforward. 

We propose an algorithm to automate search for the 
corresponding sequence of events and set external variables 
to execute given transition path. There are number of 
requirements that these variables must meet. First of all the 
guard conditions on the specified transitions should be 
carried out. In the second place, all the control object 
requirements should be fulfilled, because in production use 
these external variables would be obtained from control 
objects with given specifications. Optimization algorithms 
have proven to be efficient for such class of problems [4]. 
We apply genetic algorithms to solve this search problem. 
Details on genetic algorithm are described in Section III. 

4) Execute generated tests and check filfullment of 
specification requirements for this tests exectuion. 

Test code, which can execute the desired sequence of 
transitions is useful to perform a runtime check of all the 
contracts included in the automata. Support of contracts is 
enough to include most of the specification requirements in 
the automata and to check them during the tests execution. 
Specifications written in JML, which we use as contracts in 
our approach, are annotations for Java code and there are 
number of tools [10] that are designed to check JML 
contracts in the runtime or for static check. 

Tests that fulfill all the specification requirements doesn’t 
reveal any errors in the program, but still are useful for 
regression and stress tests. However it is much more 
important to generate tests, which fail any of the 
specification requirements for the correct set of external 
variables and therefore reveal inconsistency between 
implementation and given specification. 

5) Try to find set of external variables which filfulls all 
guards and control object requirements and fails 
specification requirements of the program.  

To obtain such values we also use genetic algorithm with 
more sophisticated fitness function, which takes into account 
not only transition guards and control object requirements, 
but also all the specification contracts defined for the given 
path in the automata. 



III. AUTOMATIZATION OF TEST DATA GENERATION 

A. Optimization problem 
Set of external variables can be represented as a vector of 

values <x1, x2, …, xn>, where xi is an external variable, and n 
is number of external variables required for this transition 
path. Fitness function takes this vector as an argument and 
returns fitness value for an external variables set. The smaller 
fitness value is the better the proposed vector suits the given 
transition path. From this point of view task can be 
considered as a minimization problem, where we look for the 
set of variables with the minimum fitness value. 

B. Candidate encoding 
Candidate is a vector of values, as defined above. We use 

one-point crossover operator, which operates by choosing a 
random position in the vector, and then new candidate is 
composed of first candidate’s sub-vector before that position 
and second candidate’s sub-vector after that position. 

Mutation operator replaces random position of the vector 
to a new random value. 

C. Fitness function 
Fitness function aims to provide metric for candidates, 

which tells how good is this candidate for a specified task. In 
our case task is to execute given sequence of transitions in 
the automaton. There is no unambiguous answer for the 
question of what fitness function to choose. 

Approaches for testing of structured programs propose to 
use such criteria as branch distance [11] for fitness 
calculation. A branch distance is a measure of how close a 
particular candidate is to executing the target branch that is 
missed e.g., |A-B| is the branch distance for the predicate (A 
> B). The lower |A-B| is the closer is A to B and the closer 
the candidate is to filfulling the condition. For the filfulled 
condition branch distance equals zero. There are 
researches [11], [12] that show effectiveness of described 
approach for structured programs testing.  

In [7] branch distance based approach is used to find 
input test data that can cause a feasible path in an EFSM 
model to be traversed. In our research we extend this 
approach to apply it to automa-based systems. As it was 
described above, we must take into account not a standalone 
EFSM, but an automa-based program enriched with system’s 
and control objects’ specification. Moreover we aim to find 
set of variables not only to execute selected path, but to 
filfull control objects’ requirements and ideally to reveal 
inadequacy of implementation and specification. 

To obtain variable values to execute given path there are 
two types of conditions that should be taken into the account: 

• guard conditions on the transitions of the automaton; 
• specification requirements of conrolled objects that 

provide external variables. 
These conditions are obligatory to be filfulled. Candidate 

that fail any of these conditions are not appropriate for test 
generation, as specification doesn’t require system to support 
such inputs. So in this case fitness function should estimate 
how close this particular candidate was to filfulling failed 
conditions. 

To give an accurate estimation we examine each state 
and transition between states on the given path separately. 
Every transition has the event, which enables it and may 
have a guard condition and an action section. In the current 
implementation external variables are introduced in 
transitions’ action sections. 

Control objects’ specification can be included in 
transition contracts: preconditions and postconditions. 
Precoditions verify, that automaton is in correct state to use 
controlled object; postconditions verify, that external 
variable value retrieved from the controlled object meets 
specification requirements.  

From this point of view execution of each transition in 
the path is divided into three small steps:  

• receive event, find transition and check guards; 
• check preconditions and execute the transition; 
• check transition postconditions. 
Each of these steps contains coditions that can be failed. 

Therefore for each of these steps we calculate branch 
distance. Fitness value for a single transition is calculated as 
sum of steps’ branch distances. 

It’s important to realize that transitions are executed 
sequentially. This means that to achieve second transition 
candidate must successfully complete first one. Therefore 
transitions in the beginning of the path are somehow more 
important then transitions in the end. This fact should be 
taken into the account in the fitness function calculcation. 
In [7], [12] transition approach level metric is introduced to 
handle this situation. 

For more accurate fitness value we consider step 
approach level. In such approach each step is assigned a 
weight value, which depends on the step’s position in the 
path. Last step weight is the smallest, first step weight is the 
greatest. Overall fitness of the candidate for the given path is 
calculated as sum of steps’ fitness multiplied by their 
weights. 

D. Specification requirements in fitness function 
Fitness function described above is aimed to find set of 

variables that would make possible given path execution. 
More desirable is to find a candidate, which reveals an 
inconsistesy between implementation and specification. For 
this purpose we need take into consideration specification 
requirements of the system represented as contracts that must 
be filfulled during the execution. We aim to fail any of these 
conditions, while guards and controlled objects’ 
requirements are filfulled. 

Such task requires iterated approach, as we need to select 
specific transition, which conditions we want to fail. For 
example, if we want any of the conditions on the second 
transition to be failed, we need all the conditions of the first 
transition to be filfulled, because there may be a dependency 
between these conditions. For different transitions selected as 
target fitness function is computed differently. Generally, if 
kth transition is a target to fail some condition, then all 
conditions of the transitions with indexes less then k must be 
fulfilled. 

In attempt to fail some conditions we use branch distance 
turned inside out. If condition is failed then value is zero. 



The closer the candidate is to failing the condition the lower 
the value. This reversed branch distance value is included in 
path fitness value calculation, similar to common step 
fitness, described above. 

We aim to reveal faults at any transition so we iterate 
through the given path. At the first step we consider 
transition path of one transition, the first one. We perform 
fixed number of attempts to reveal a fault. If any found, test 
is generated. After fixed number of attempts we move to the 
next step: consider path of two transitions. We go on like this 
till we reach the whole given path length. 

Finally, after all the iterations are done, for all revealed 
faults test code is generated, which can be executed 
separately and used for debugging and bug fixing. 

IV. CASE STUDY 
In this paper we present a case study that we used in our 

research. A proof-of-concept tool is being developed during 
the research. Version of the tool used for the case study 
contained number of limitations: only integer variable types 
are supported and current version is capable of providing set 
of variables to execute given path, but not to reveal faults. 

We made up an example of specification for ATM 
machine and developed an automa-based system for this 
specification to illustrate our approach. 

Sample specification of an ATM machine: 
• system must perform withdrawal operations from the 

specified account on user requests; 
• initial amount of money on the account is being 

retrieved from the bank at the start up. Amount must 
be a positive number, less or equal to 1000000; 

• each time user inputs amount of money on the 
keyboard a transaction must be initiated. Amount 
must be greater then 1000 and less then 5000. If 
wrong input is done user must be notified about an 
error and operation of the system must be stopped; 

• transaction must be successfully completed if after 
transaction there would be a positive amount of 
money left on the account. Otherwise transaction 
must be rollbacked and user must be notified about 
an error and operation of the system must be 
stopped; 

• while no error occurs user can make withdrawals 
unlimited number of times. 

For the described ATM system it is convenient to 
introduce number of states: initialization, user input, 
withdrawal operation, error in entered amount, error during 
the withdrawal. FSM for this system is presented on Fig. 1: 

 
Figure 1.  FSM for the ATM system. 

Such model contains only basic requirements of the 
specification. To test such system one would need to 
examine specification in natural language and write tests 
manually. 

We propose to use EFSM and to include as much 
specification as possible to the model. Such EFSM is 
presented on Fig. 2: 

 
Figure 2.  EFSM model of the ATM machine 

Model looks more complicated this time, but on the other 
hand now it contains all the specification requirements, that 
were described in natural language. Major advantage of such 
representation is that now requirements are suitable to use in 
test generation process and for automatic checks during test 
executions. 

Current automata-program interacts with two different 
control objects:  

• control object responsible for bank account 
management. It provides amount of money on 
account and performs withdrawal operation; 

• control object providing inputs from the user. It can 
be keyboard or any other device, which is not 
important for our purpose. Important is that this 
object provides an amount of money to withdraw. 

Control objects’ inputs are presented in model as external 
variables. Transition which retrieves a value from the 
controlled object contains following code on its label: 
<object name>.get(<variable name>). 



List of external variables with specification requirements 
for presented on Fig. 2 ATM model: 

• ext_account – initial amount of money on bank 
account. This value is retrieved only once on the first 
transition. Specification requires:  
0 <= ext_account < 1000000; 

• ext_amount – amount of money to withdraw. 
This variable can be retrieved unlimited number of 
times during the execution. Specification requires:  
1000 <= ext_amount < 5000. 

Use of external variable with the defined requirements 
gives us ability not to depend on control object’s specific 
implementation. Controlled objects that would be used in 
production are not needed for the test generation and for 
testing of the automata-based program. This can be critical if 
controlled objects are expensive or complex equipment, 
which are not available till the deployment of the system. 
Also it’s important if actual controlled object implies manual 
input (like any keyboard does), because automatic values 
generation is preferable. 

We considered number of different test scenarios to 
apply our approach. First, scenarios are defined in natural 
language, for example: 

• user withdraws 10 times and on 11th attempt 
transaction fails, as not enough money on the 
account; 

• user withdraws 5 times and on 6th attempt 
transaction fails, as not enough money on the 
account; 

• user successfully withdraws 11 times; 
• user withdraws 7 times and on 8th attempt incorrect 

amount of money is inputted. 
Detailed description on how to use proposed approach 

for the first example follows. Test scenario should be 
described in terms of transactions. Scenario in terms of 
transition labels for the automaton given on Fig. 2: 

t1,  
t2, t4, t5, t2, t4, t5, t2, t4, t5, 
t2, t4, t5, t2, t4, t5, t2, t4, t5, 
t2, t4, t5, t2, t4, t5, t2, t4, t5, 
t2, t4, t5, t6. 
Sequence of transitions is given to the proof-of-concept 

tool as an input. Values of external variables to execute this 
path is produced automatically: 

ext_acount = 28688;  
ext_account1 = 3198;  
ext_account2 = 4612;  
ext_account3 = 2280;  
ext_account4 = 2310;  
ext_account5 = 4311;  
ext_account6 = 1786;  
ext_account7 = 3867;  
ext_account8 = 1217;  
ext_account9 = 2739;  
ext_account10 = 519; 
ext_account11 = 6376; 
For this set of variables test code can be generated, which 

provides correct sequence of events and external variables 

values to the automata-program, so it executes actions, 
described in test scenario. 

V. CONCLUSION 
Simultaneously with Model Checking testing is useful to 

check conformance of implementation and specification 
while developing automata-based systems. For effective 
testing it is important to automate test generation process, as 
manual test creation is labor intensive and expensive task. In 
this paper we proposed an approach for testing of automata-
based systems and a proof-of-concept tool demonstrating 
benefits of described approach. Design contracts and EFSM 
are used to create models containing specification 
requirements. Genetic algorithm is used to automate the test 
generation process.  

We plan to provide an IDE plug-in for JetBrains MPS 
(Meta Programming System) [13], which has the 
StateMachine extension to develop automata-based 
programs. Seamless integration of test creation into 
development process would allow detecting possible 
implementation faults and design flaws at all development 
stages. 
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