
A GA-based approach for test generation for automata-based programs

Andrey Zakonov, Oleg Stepanov (research supervisor), Anatoly Shalyto (research supervisor)
Fac. of Information Technologies and Programming

St. Petersburg State University of Information Technologies, Mechanics and Optics
Saint-Petersburg, Russia

e-mail: andrew.zakonov@gmail.com, oleg.stepanov@gmail.com, shalyto@mail.ifmo.ru

Abstract—Automata-based approach is often used for
developing complex systems. Model Checking is commonly
used to check conformance of the system against its
specification. However, verification techniques don’t allow
checking the system in whole, as system consists of not only the
model, but also control objects, which are not suitable for
model checking. In this paper we propose an approach for
testing of automata-based programs. We use EFSM and
contracts to extend model with specification requirements and
we demonstrate how genetic algorithms could be used to
automate generation of tests to find faults in the system in
whole.

Keywords- Automata; EFSM; Testing; Genetic algorithms

I. INTRODUCTION
Automata-based program consists of a finite state

machine or any other (often more complicated) formal
automata and number control objects, which the model
interacts with [1]. The most commonly used technique for
verifying automata-based programs is Model Checking [2]
because it can be used with very high degree of automation.
However Model Checking suits only for verification of the
automata, but not the system in whole. Controlled objects
behavior and interaction of the automata and their controlled
objects are not checked in this approach. Therefore there
could be undetected errors left in the automata-based system,
even if the automata itself was successfully verified against
its specification.

In this paper we propose to use testing to check the
automata-based system in whole. Software testing is
normally a labor intensive and very expensive task. It
accounts for about half of a typical software project life
cycle [3]. This means that straightforward approach to
testing, such as manual testing, is not the best option.
Recently there has been much interest in automated test data
generation [4]. Even though testing cannot guarantee the
correctness of a program, large number of tests does
contribute significantly to the identification and reduction of
faults, improving the likelihood that the software
implementation will succeed. Therefore this paper includes
description of an approach for testing automata-based
programs and a way to automate this process using genetic
algorithms.

We propose to use testing to check implementation
conformance against its specification. Specification given in

natural language is suitable only for manual testing. In order
to automate testing process, specification must be presented
in some formal way. In our approach we include as much
specification as it’s possible in the automaton, so it would
contain the instruments of its own verification. Finite state
machines (FSMs) are commonly used for the purpose of
automata description. However, a FSM can only model
simple reaction of the system to its input events; variables
and guard conditions on transitions are needed in order to
model a system with complex behavior and data
dependencies. Using extended finite state machines
(EFSMs), which support variables and guard conditions, is a
reasonable choice to describe some of the specification
requirements in the automata. As it was proposed in [5] we
use contracts [6] to include even more specification
requirements in the automata. Having specification
requirements included in the program makes it possible to
automate checking of these requirements while test is
executed. Moreover requirements can be used to aim test
generation at detecting situations, when they are not fulfilled.

There is one more reason to use EFSMs. Most programs
are designed to interact with some environment: program
receives events and input data; automata react to these events
and produce some output data. In automata-based programs
one uses controlled objects for this purpose: they receive
events and provide input data, which can be used in automata
in guard conditions on transitions or as other control object
functions’ arguments. In EFSMs such data are represented as
variables. Variable in EFSM could be internal, defined inside
the EFSM itself, or external – received from the control
object. During testing values of external variables can be
provided by the test script.

Considering the proposed description of model and its
specification, we defined a test for automata program as a
sequence of events and a set of external variables, which lead
to specific sequence of transitions (transition path) of the
automata. As opposed to the traditional approach, where test
is a program code, we propose to describe automata test as a
transition path, which is much closer to specification level
and helps to shorten the gap between the specification and
the implementation. Transition path which is interesting for
test creation can be easily obtained from natural language
specification, but to create test code we need to find
sequence of events and set of variables, that would lead to
the given path execution. Obtaining sequence of events for
the path is straightforward. However set of external variables

is not so easy to guess: one need to find set of values, which
would satisfy all transition guards on the given transition
path. We propose to apply genetic algorithms to find suitable
values for external variables.

Overall, this paper addresses number of problems:
• propose an approach for testing automata-based

programs;
• automate test creation by providing a tool, which

finds suitable sequence of events and set of external
variables for a given transition path and generates
test code;

• automate validation of specification requirements,
included in the automata, while executing tests;

• attempt to generate tests that lead to violation of
specification requirements and so reveal faults in
implementation.

The rest of the paper is organized as follows. Section II
gives details on proposed approach for testing automata-
based programs. Section III describes genetic algorithm
applied to find external variables’ values. Section IV tells
about proof-of-concept tool being developed and preliminary
results; Section V concludes.

II. TESTING FOR AUTOMATA-BASED PROGRAMS
The following approach for developing automata-based

programs and creating test suites is proposed in this paper:
1) During development include signifigant part of

natural language specification in the automata, using EFSM
variables, transition guards and contracts.

Controlled objects also have specification and
requirements for their inputs/outputs and interaction with the
automata. All this specification requirements must be
fulfilled during tests execution. Benefit of having controlled
object specification included in the automata is that actual
implementation of this controlled object becomes less
significant for testing. Given the requirements for the
object’s output, we can check, that automaton reacts well for
any data that fulfils given requirements. And vice versa it’s
acceptable if program fails for the data, which don’t fulfill
the object’s specification.

In our approach we use JML specification language [9] to
enrich automata with specification requirements. JML is a
design by contract approach and contracts in JML include
preconditions, postconditions, and invariants. In our case,
such contracts can be defined for automata states and
transitions.

2) From natural language specification select
interesting scenarious for testing and present them as a
sequence of transitions in the automata.

We consider sequence of automata transitions (transition
path in the automata) to be a convenient way to describe a
test scenario, as this representation of test could be easily
derived from a natural language description of a test
scenario.

There is number of researches available [7], [8] that
addresses the problem of finding transition paths in EFSM to
achieve selected coverage criteria (e.g. state or transition
coverage in the EFSM). Such techniques can be successfully

used together with manual test paths selection and, combined
with the approach presented in this paper, could help to
automate producing of valuable test suites.

3) Find sequence of events and values of external
variables, which would make automata program to execute
the disired transition path.

Automaton reacts to the events and perform transitions
depending on the values of external variables used in
transition guards. Representation of a test as a sequence of
events and values of external variables is convinient to
programmatically generate test code, but it has very little
sense for a developer who works with specification defined
in natural language. In our approach developer can describe
test scenario in natural language first and then write it down
in automata terms as a sequence of transitions, which is
straightforward.

We propose an algorithm to automate search for the
corresponding sequence of events and set external variables
to execute given transition path. There are number of
requirements that these variables must meet. First of all the
guard conditions on the specified transitions should be
carried out. In the second place, all the control object
requirements should be fulfilled, because in production use
these external variables would be obtained from control
objects with given specifications. Optimization algorithms
have proven to be efficient for such class of problems [4].
We apply genetic algorithms to solve this search problem.
Details on genetic algorithm are described in Section III.

4) Execute generated tests and check filfullment of
specification requirements for this tests exectuion.

Test code, which can execute the desired sequence of
transitions is useful to perform a runtime check of all the
contracts included in the automata. Support of contracts is
enough to include most of the specification requirements in
the automata and to check them during the tests execution.
Specifications written in JML, which we use as contracts in
our approach, are annotations for Java code and there are
number of tools [10] that are designed to check JML
contracts in the runtime or for static check.

Tests that fulfill all the specification requirements doesn’t
reveal any errors in the program, but still are useful for
regression and stress tests. However it is much more
important to generate tests, which fail any of the
specification requirements for the correct set of external
variables and therefore reveal inconsistency between
implementation and given specification.

5) Try to find set of external variables which filfulls all
guards and control object requirements and fails
specification requirements of the program.

To obtain such values we also use genetic algorithm with
more sophisticated fitness function, which takes into account
not only transition guards and control object requirements,
but also all the specification contracts defined for the given
path in the automata.

III. AUTOMATIZATION OF TEST DATA GENERATION

A. Optimization problem
Set of external variables can be represented as a vector of

values <x1, x2, …, xn>, where xi is an external variable, and n
is number of external variables required for this transition
path. Fitness function takes this vector as an argument and
returns fitness value for an external variables set. The smaller
fitness value is the better the proposed vector suits the given
transition path. From this point of view task can be
considered as a minimization problem, where we look for the
set of variables with the minimum fitness value.

B. Candidate encoding
Candidate is a vector of values, as defined above. We use

one-point crossover operator, which operates by choosing a
random position in the vector, and then new candidate is
composed of first candidate’s sub-vector before that position
and second candidate’s sub-vector after that position.

Mutation operator replaces random position of the vector
to a new random value.

C. Fitness function
Fitness function aims to provide metric for candidates,

which tells how good is this candidate for a specified task. In
our case task is to execute given sequence of transitions in
the automaton. There is no unambiguous answer for the
question of what fitness function to choose.

Approaches for testing of structured programs propose to
use such criteria as branch distance [11] for fitness
calculation. A branch distance is a measure of how close a
particular candidate is to executing the target branch that is
missed e.g., |A-B| is the branch distance for the predicate (A
> B). The lower |A-B| is the closer is A to B and the closer
the candidate is to filfulling the condition. For the filfulled
condition branch distance equals zero. There are
researches [11], [12] that show effectiveness of described
approach for structured programs testing.

In [7] branch distance based approach is used to find
input test data that can cause a feasible path in an EFSM
model to be traversed. In our research we extend this
approach to apply it to automa-based systems. As it was
described above, we must take into account not a standalone
EFSM, but an automa-based program enriched with system’s
and control objects’ specification. Moreover we aim to find
set of variables not only to execute selected path, but to
filfull control objects’ requirements and ideally to reveal
inadequacy of implementation and specification.

To obtain variable values to execute given path there are
two types of conditions that should be taken into the account:

• guard conditions on the transitions of the automaton;
• specification requirements of conrolled objects that

provide external variables.
These conditions are obligatory to be filfulled. Candidate

that fail any of these conditions are not appropriate for test
generation, as specification doesn’t require system to support
such inputs. So in this case fitness function should estimate
how close this particular candidate was to filfulling failed
conditions.

To give an accurate estimation we examine each state
and transition between states on the given path separately.
Every transition has the event, which enables it and may
have a guard condition and an action section. In the current
implementation external variables are introduced in
transitions’ action sections.

Control objects’ specification can be included in
transition contracts: preconditions and postconditions.
Precoditions verify, that automaton is in correct state to use
controlled object; postconditions verify, that external
variable value retrieved from the controlled object meets
specification requirements.

From this point of view execution of each transition in
the path is divided into three small steps:

• receive event, find transition and check guards;
• check preconditions and execute the transition;
• check transition postconditions.
Each of these steps contains coditions that can be failed.

Therefore for each of these steps we calculate branch
distance. Fitness value for a single transition is calculated as
sum of steps’ branch distances.

It’s important to realize that transitions are executed
sequentially. This means that to achieve second transition
candidate must successfully complete first one. Therefore
transitions in the beginning of the path are somehow more
important then transitions in the end. This fact should be
taken into the account in the fitness function calculcation.
In [7], [12] transition approach level metric is introduced to
handle this situation.

For more accurate fitness value we consider step
approach level. In such approach each step is assigned a
weight value, which depends on the step’s position in the
path. Last step weight is the smallest, first step weight is the
greatest. Overall fitness of the candidate for the given path is
calculated as sum of steps’ fitness multiplied by their
weights.

D. Specification requirements in fitness function
Fitness function described above is aimed to find set of

variables that would make possible given path execution.
More desirable is to find a candidate, which reveals an
inconsistesy between implementation and specification. For
this purpose we need take into consideration specification
requirements of the system represented as contracts that must
be filfulled during the execution. We aim to fail any of these
conditions, while guards and controlled objects’
requirements are filfulled.

Such task requires iterated approach, as we need to select
specific transition, which conditions we want to fail. For
example, if we want any of the conditions on the second
transition to be failed, we need all the conditions of the first
transition to be filfulled, because there may be a dependency
between these conditions. For different transitions selected as
target fitness function is computed differently. Generally, if
kth transition is a target to fail some condition, then all
conditions of the transitions with indexes less then k must be
fulfilled.

In attempt to fail some conditions we use branch distance
turned inside out. If condition is failed then value is zero.

The closer the candidate is to failing the condition the lower
the value. This reversed branch distance value is included in
path fitness value calculation, similar to common step
fitness, described above.

We aim to reveal faults at any transition so we iterate
through the given path. At the first step we consider
transition path of one transition, the first one. We perform
fixed number of attempts to reveal a fault. If any found, test
is generated. After fixed number of attempts we move to the
next step: consider path of two transitions. We go on like this
till we reach the whole given path length.

Finally, after all the iterations are done, for all revealed
faults test code is generated, which can be executed
separately and used for debugging and bug fixing.

IV. CASE STUDY
In this paper we present a case study that we used in our

research. A proof-of-concept tool is being developed during
the research. Version of the tool used for the case study
contained number of limitations: only integer variable types
are supported and current version is capable of providing set
of variables to execute given path, but not to reveal faults.

We made up an example of specification for ATM
machine and developed an automa-based system for this
specification to illustrate our approach.

Sample specification of an ATM machine:
• system must perform withdrawal operations from the

specified account on user requests;
• initial amount of money on the account is being

retrieved from the bank at the start up. Amount must
be a positive number, less or equal to 1000000;

• each time user inputs amount of money on the
keyboard a transaction must be initiated. Amount
must be greater then 1000 and less then 5000. If
wrong input is done user must be notified about an
error and operation of the system must be stopped;

• transaction must be successfully completed if after
transaction there would be a positive amount of
money left on the account. Otherwise transaction
must be rollbacked and user must be notified about
an error and operation of the system must be
stopped;

• while no error occurs user can make withdrawals
unlimited number of times.

For the described ATM system it is convenient to
introduce number of states: initialization, user input,
withdrawal operation, error in entered amount, error during
the withdrawal. FSM for this system is presented on Fig. 1:

Figure 1. FSM for the ATM system.

Such model contains only basic requirements of the
specification. To test such system one would need to
examine specification in natural language and write tests
manually.

We propose to use EFSM and to include as much
specification as possible to the model. Such EFSM is
presented on Fig. 2:

Figure 2. EFSM model of the ATM machine

Model looks more complicated this time, but on the other
hand now it contains all the specification requirements, that
were described in natural language. Major advantage of such
representation is that now requirements are suitable to use in
test generation process and for automatic checks during test
executions.

Current automata-program interacts with two different
control objects:

• control object responsible for bank account
management. It provides amount of money on
account and performs withdrawal operation;

• control object providing inputs from the user. It can
be keyboard or any other device, which is not
important for our purpose. Important is that this
object provides an amount of money to withdraw.

Control objects’ inputs are presented in model as external
variables. Transition which retrieves a value from the
controlled object contains following code on its label:
<object name>.get(<variable name>).

List of external variables with specification requirements
for presented on Fig. 2 ATM model:

• ext_account – initial amount of money on bank
account. This value is retrieved only once on the first
transition. Specification requires:
0 <= ext_account < 1000000;

• ext_amount – amount of money to withdraw.
This variable can be retrieved unlimited number of
times during the execution. Specification requires:
1000 <= ext_amount < 5000.

Use of external variable with the defined requirements
gives us ability not to depend on control object’s specific
implementation. Controlled objects that would be used in
production are not needed for the test generation and for
testing of the automata-based program. This can be critical if
controlled objects are expensive or complex equipment,
which are not available till the deployment of the system.
Also it’s important if actual controlled object implies manual
input (like any keyboard does), because automatic values
generation is preferable.

We considered number of different test scenarios to
apply our approach. First, scenarios are defined in natural
language, for example:

• user withdraws 10 times and on 11th attempt
transaction fails, as not enough money on the
account;

• user withdraws 5 times and on 6th attempt
transaction fails, as not enough money on the
account;

• user successfully withdraws 11 times;
• user withdraws 7 times and on 8th attempt incorrect

amount of money is inputted.
Detailed description on how to use proposed approach

for the first example follows. Test scenario should be
described in terms of transactions. Scenario in terms of
transition labels for the automaton given on Fig. 2:

t1,
t2, t4, t5, t2, t4, t5, t2, t4, t5,
t2, t4, t5, t2, t4, t5, t2, t4, t5,
t2, t4, t5, t2, t4, t5, t2, t4, t5,
t2, t4, t5, t6.
Sequence of transitions is given to the proof-of-concept

tool as an input. Values of external variables to execute this
path is produced automatically:

ext_acount = 28688;
ext_account1 = 3198;
ext_account2 = 4612;
ext_account3 = 2280;
ext_account4 = 2310;
ext_account5 = 4311;
ext_account6 = 1786;
ext_account7 = 3867;
ext_account8 = 1217;
ext_account9 = 2739;
ext_account10 = 519;
ext_account11 = 6376;
For this set of variables test code can be generated, which

provides correct sequence of events and external variables

values to the automata-program, so it executes actions,
described in test scenario.

V. CONCLUSION
Simultaneously with Model Checking testing is useful to

check conformance of implementation and specification
while developing automata-based systems. For effective
testing it is important to automate test generation process, as
manual test creation is labor intensive and expensive task. In
this paper we proposed an approach for testing of automata-
based systems and a proof-of-concept tool demonstrating
benefits of described approach. Design contracts and EFSM
are used to create models containing specification
requirements. Genetic algorithm is used to automate the test
generation process.

We plan to provide an IDE plug-in for JetBrains MPS
(Meta Programming System) [13], which has the
StateMachine extension to develop automata-based
programs. Seamless integration of test creation into
development process would allow detecting possible
implementation faults and design flaws at all development
stages.

ACKNOWLEDGMENT
The research is conducted in scope of the Federal target

program "Scientific and pedagogical personnel of innovative
Russia for 2009 - 2013 years".

REFERENCES

[1] A. A. Shalyto, “Logic Control and “Reactive” Systems:
Algorithmization and Programming,” Automation and Remote
Control, vol. 62, no. 1, pp. 1–29, 2001.

[2] E. M. Clarke, Jr. O. Grumberg and D. A. Peled, “Model Checking”,
MIT Press, 1999

[3] G. Myers, The Art of Software Testing, 2 ed: John Wiley & Son. Inc,
2004.

[4] McMinn, P., “Search-based software test data generation: a survey:
Research Articles,” Software Testing, Verification & Reliability,
2004. 14(2): p. 105-156.

[5] O. Stepanov, "Methods of implementation of automata-based object-
oriented programs," PhD Thesis (in Russian), SPbSU ITMO, 2009

[6] B. Meyer, “Applying design by contract,” Computer, 25(10), pp. 40–
51, Oct. 1992.

[7] Kalaji, A.S., R.M. Hierons, and S. Swift. “Generating Feasible
Transition Paths for Testing from an Extended Finite State Machine
(EFSM),” in Software Testing, Verification, and Validation (ICST),
2009 2nd International IEEE Conference on. 2009. Denver, Colorado
- USA: IEEE.

[8] Lai, R., “A survey of communication protocol testing. Journal of
Systems and Software”, 2002. 62(1): p. 21-46.

[9] G. T. Leavens, A. L. Baker, C. Ruby, “Preliminary design of JML: A
behavioral interface specification language for Java,” Iowa State
Univ., Dept. of Comput. Sci., Tech. Rep. 98-06u, Apr. 2003.

[10] D.R.Cokand, J.R.Kiniry, “ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2,” Nijmegen Inst.
for Computing and Inform. Sci., Tech. Rep. NIII-R0413, May 2004.

[11] Tracey, N., J. Clark, K. Mander, and J. McDermid. “An automated
framework for structural test-data generation,” in Automated
Software Engineering, 1998. Proceedings. 13th IEEE International
Conference on. 1998.

[12] Wegener, J., A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Information and
Software Technology, 2001. 43(14): p. 841-854.

[13] MPS User's Guide.
http://www.jetbrains.net/confluence/display/MPS/MPS+User%27s+G
uide.

