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Abstract – This paper presents an integrated approach to 

testing automation of telecommunication projects along with 
proposals to automation of conformance testing. The underlying 
idea is to benefit from combining formal verification and testing 
automation techniques in order to improve product quality. 

 

I. INTRODUCTION 

Testing is known to be an essential step in any modern 
industrial software development process. The importance of 
software testing and its impact on software quality can’t be 
underestimated. To date, spending up to 40% of efforts on 
testing is not uncommon for a software company. Therefore, 
testing automation and testing efficiency – the issues 
addressed in this paper - are very important. 

This paper describes a part of technology which combines 
formal verification, testing and code generation techniques in 
order to improve software quality, reduce efforts and costs. 
This technology covers the whole software development 
process which starts from the initial requirements and goes 
through formalization, verification, simulation, code 
generation and testing to a software product. The technology’s 
part, which is described below, relates to the techniques which 
on the one hand can be used for automation of functional tests 
generation, and on the other hand can be applied for 
conformance testing. 

The underlying idea of the proposal is to benefit from 
presence of verification step in the technology. Verification is 
a powerful technique which can significantly improve 
software quality and formally prove absence of mistakes in 
algorithm. But it also has another important advantage: a 
model is created on the verification step, and each path in the 
model’s behavior tree can be considered as a potential test 
case. The number of such paths in industrial-scale projects is 
enormous, so a special filtering technique is required to obtain 
suitable (optimal) test suite. This approach is applicable not 
only to automation of functional tests generation, but also for 
automation of conformance testing (in case if a model of the 
corresponding standard is provided). An example of such 
standard is CDMA2000 [1]. CDMA2000 is a family of 3G 
mobile technology standards which use CDMA (Code 
Division Multiple Access) channel access to send data, voice, 
and signaling data between mobile phones and cell sites. 
Importance of compliance of any CDMA2000 device and cell 
site with this standard is obvious. In practice, compliance is 
checked by rather significant amount of conformance tests 
which are prepared manually. Proposed approach to 
conformance testing allows avoiding manual tests 
development by means of reusing artifacts of verification step. 

This paper outlines the main principles of automated test 
suite generation on the base of formalized specifications in the 
language of basic protocols using the verification tool VRS [2, 
3] and tests generation tool TAT [4]. 

II. TECHNOLOGY OVERVIEW  

Despite the paper is focused on testing automation part of 
the technology, overview of the whole technology chain is 
required for proper understanding of application domain of the 
proposing ideas. 

The technology is intended for automation of manual efforts 
in software development process as much as possible (by 
applying code generation techniques) and increasing products' 
quality (because of combining formal verification and testing). 

According to the technology chain, illustrated in Fig. 2, 
software development starts from understanding and 
formalizing of the requirements. On the formalization step, 
engineers create a model of the system in terms of basic 
protocols. Basic protocol is a formal description of some 
action which shall be performed if the system goes into a 
certain state (pre-condition is satisfied), and a new state of the 
system after performing this action (post-condition). In other 
words, basic protocol is a “small piece” of system’s behavior. 
Basic protocols are represented in the following notation: 

)()(: )( XXX X βα µ  →∀  

where X is protocol parameters’ list,α  is a pre-condition, β  

is post-condition and µ  is action; α , µ  and β  may depend 

on X. This is a Hoare’s triplet [5]. 
The formalism of basic protocols is based on the theory of 

agents and environments with the insertion function [6]. It was 
proposed by A. Letichevsky et al. for creating system behavior 
models suitable for automated verification [7, 8]. Basic 
protocol is just a small MSC chart. Fig. 1 illustrates a basic 
protocol example.  

Two basic protocols can be concatenated when post-
condition of the first one is equal to pre-condition of the 
second one. All possible concatenations of basic protocols 
construct the model’s behavior tree. Each path in this tree is a 
possible scenario of system’s behavior. 

Formalization is mostly manual work, but it can also be 
automated or simplified in some sense. For example, the user 
can perform formalization in terms of use cases (Use Case 
Maps (UCM [9]) or Message Sequence Charts (MSC [10])) or 
an UML [11] model. Special tools are used for basic protocols 
generation from UCM, MSC and UML.  

The second step of the technology chain is verification. The 
system’s model, represented in terms of basic protocols, is 



verified against some properties using model checker of the 
VRS tool.  

A set of basic protocols can be interpreted as a set of states 
and transitions, i.e. as a state machine. Having a state machine 
which describes system’s behavior, it is possible to generate 
system’s logic code in a target language. But there is no tool 
which can generate executable code from basic protocols, so 
intermediate representation is required. Specification 
Description Language (SDL [12]) was chosen to be the 
language of this intermediate representation. SDL is rather 
simple and well-known language for describing state 
machines. Presence of intermediate language makes it much 
more convenient for the engineers to debug models. 

So, the third step is conversion from basic protocols 
representation to SDL representation. This conversion is 
performed by special tools. 

As soon as SDL code is obtained, it is possible to generate 
code in target language. Generation of target code is the fourth 
step. A user has opportunity to choose any SDL to target code 
translator, but in our practice we use Sdl2cpp because it is 
seamlessly integrated into the technology chain. Sdl2cpp tool 
is efficient and reliable translator from SDL to C++. Sdl2cpp 
can generate configuration file for TAT (Test Automation 
Toolset) with test environment description. So, in case of 
using Sdl2cpp together with TAT, test environment 
configuring becomes transparent for a user (no manual efforts 
required). 

 

 
Fig. 1. Basic protocol 

 
As soon as model’s executable code is obtained and test 

environment is configured, it is possible to run tests and 
perform real-time simulation. It is also rather convenient to do 
step-by-step simulation in IBM Rational SDL Suite [13] with 
tracking of system’s behavior in graphical mode. 

The fifth step is creation of test coverage criterion. Model in 
terms of basic protocols is a behavior tree with enormous 
number (more precisely – infinite number) of potential 
scenarios. It is impossible to cover this entire tree with tests, 
so a filtering criterion is required. The user is free to choose 
any criterion, but usage of requirements coverage criterion 
makes it is possible to generate relatively small test suite 
which covers functional requirements. This criterion requires 
creation of “chains” for each requirement. “Chain” is a 

sequence of key impacts on the system under test (SUT) and 
systems’ responses which cover a particular requirement 
(requirement may be covered by more than one “chain”).  

Creation of chains is a process of requirements 
interpretation, so it is mostly manual work, especially if 
requirements are presented in natural language. Chains 
creation is significantly simplified if customer provides 
requirements in formal notation, for example in terms of UCM 
or MSC. 

 

  
Fig. 2. Overall technology scheme 

 
The sixth step is test scenarios generation. VRS tool uses 

chains for guided search in model’s behavior tree and 
generates a trace if it can find a path with chain’s key events. 
As a result, a set of scenarios which cover functional 
requirements is generated. These scenarios are represented in 
terms of MSC charts. For the requirements which for some 
reasons can’t be expressed in terms of chains (for example, 
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non-functional requirements), test cases shall be created 
manually.  

TAT tools are used for generation of executable test 
environment code from MSC charts. So, the next (seventh) 
step is generation of a test suite in a target language using 
TAT tools. This step also includes substitution of symbolic 
parameters of MSC scenarios with actual values taken from 
tolerance range. 

The eight's step is running generated test suite against the 
model. 

The technology chain consisting of the mentioned eight 
steps works fine when scale of a project is rather small. But 
when the project starts to grow, verification becomes a bottle 
neck because of the state explosion problem. Verification of 
industrial-scale projects requires abstracting from some 
details, therefore basic protocols model must be detailed after 
verification and before production code generation. It is 
usually required to maintain two models within the scope of 
one project: high-level model which is used for verification, 
modeling and simulation, and production model which is used 
for product code generation. Each model requires its own test 
suite. 

So, the ninth step is detailing. This step is also known as 
lowering because the model is filled with low-level details. 
Usually it implies adding signals’ parameters, replacing 
functional stubs (when a complex behavior is encapsulated in 
one signal; e.g.: usage of “InitSession” signal instead of 
describing real sequence of messages for session initialization) 
with actual sequence of signals and adding omitted signals. 
Lowering is another one manual part of the technology. 

As soon as the model is filled with low-level details, it can 
be used for product code generation. To generate product 
code, the user has to repeat steps 3 and 4 for the detailed 
model. To generate a test suite for the product, the user has to 
repeat steps 6 and 7 (step 5 is not required because chains for 
the high-level model are applicable to the detailed model). 

III. TESTING AUTOMATION  

The whole technology chain consists of several steps. Steps 
5, 6, 7 and 8 relate to tests preparation, generation and 
execution activities.   

Tests preparation starts from requirements interpretation and 
formulating coverage criteria in terms of “chains” – sequences 
of key events. These chains are used as oracle for guided 
search in model’s behavior tree. It is natural that from infinite 
number of possible system’s behaviors, test engineers want to 
choose reasonable quantity of scenarios which cover SUT 
requirements. This result can be achieved in case of using 
chains: VRS tool will automatically generate corresponding 
traces (test cases). In the worst case, the number of test cases 
will be equal to the number of chains, but in practice some 
traces cover more than one requirement, so quantity of tests is 
usually less than quantity of chains. Special tool is responsible 
for selecting minimal test suite from generated traces. This 
tool also marks the points (in MSC traces), where coverage of 
each particular requirement starts and ends, along with the 
places of key events. 

As soon as a set of scenarios is selected according to the 
coverage criteria, it is required to replace scenarios’ 

parameters with concrete values (if they contain symbolic 
parameters). 

VRS tool can work in two modes. The first one is regular 
model checking where all the parameters have concrete 
values. The second mode is called “symbolic”; in this mode 
tolerance range for each parameter is evaluated after applying 
each basic protocol, so generated MSC charts (scenarios) 
contain symbolic parameters, and VRS provides their values’ 
constraints (tolerance ranges). So, in case of using “symbolic” 
mode, there is one additional step: replacement of MSCs’ 
symbolic parameters with concrete values taken from 
tolerance range.  

One MSC with symbolic parameters is actually a set of 
equivalent behaviors (the same sequence of events for any 
parameters’ values from tolerance range). So, taking into 
account parameters’ constraints and dependencies between 
parameters, the user can obtain a set of test scenarios with 
same sequence of events, but different parameters’ values.  

A set of concrete values for each trace we will call a profile. 
The user is free to choose any profile, but usually the 
following profiles are chosen: 

• “left edge” profile - all independent parameters 
have minimum possible values (from the tolerance 
range); 

• “right edge” profile - all independent parameters 
have maximum possible values (from the tolerance 
range); 

• “middle” profile – all independent parameters have 
arbitrary values (from the tolerance range); 

•  “error” profile – at least one parameter has value 
out of tolerance range. Test case with any “error” 
profile shall always fail. 

Scenarios with concrete parameters can be used for test suite 
generation.  

 

 
Fig. 3. Test suite generation 

 
Test Automation Toolset (TAT) is used for generation test 

suites in target language on the base of scenarios represented 
in terms of MSC charts and configuration XML files with 
environment description. 

Test suite generation consists of several major steps: 
• Analysis of XML configuration files and 

generation of environment-specific code in target 
language; 
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• Generation of Abstract Test Suite (ATS) – 
representation of a test suite as a set of states and 
transitions between them (state machine) in TCL. 
ATS is generated on the base of MSC charts; 

• Generation of a test suite in target language on the 
base of ATS. 

These steps are illustrated in Fig. 3 
TAT has very flexible mechanism of code generation 

templates. Using templates, TAT can be configured for 
generation of test suite code in any language. Currently, the 
most powerful template is for C++, but several other 
languages are also supported, including Java SE, Java ME and 
TTCN-3 (only C++ code generation is considered in the scope 
of this paper). 

Generated test suite interacts with a system under test via IP 
sockets (both TCP and UDP are supported) or via Unix 
domain sockets (both stream and datagram are supported). A 
user can specify which sockets to use in TAT configuration 
files along with the following settings: 

• Initialization code which will be executed before 
the beginning of each test case. Sometimes some 
initialization of a system under test is required 
before running a test case. The code which is 
responsible for moving SUT to its initial state shall 
be placed in corresponding section of TAT XML 
configuration file (initialization section). 

• Finalization code which will be executed after a 
test case is finished regardless of the verdict 
(pass/fail). It is a good practice to free resources 
when they are not in use any more, this can be 
done in corresponding section of TAT XML 
configuration file (finalization section). 

• Timeouts of waiting for incoming signals. The user 
can specify how much time to wait for signal(s) in 
milliseconds. If test environment does not receive 
the signal(s) which it expects (according to the 
MSC scenario) within this time interval, 
corresponding test will be marked as failed. It is 
possible to specify default timeout for all incoming 
signals and, if necessary, redefine this parameter 
for any particular incoming signal. 

• Signals’ distinguisher code (if not provided by 
Sdl2cpp). This code is responsible for 
distinguishing incoming messages. In case of using 
TAT together with Sdl2cpp, this code is generated 
automatically. If TAT is used as stand-alone tool, 
the user has to provide this code manually. 

• Signals’ sending/receiving code (if not provided by 
Sdl2cpp). The user may provide own code for 
serialization and deserialization of messages and 
their parameters. In case of using TAT together 
with Sdl2cpp, this code is generated automatically. 
If TAT is used as stand-alone tool, the user has to 
provide this code manually. 

• Instances and interfaces definition (if not provided 
by Sdl2cpp). All the instances (used in MSCs) 
must be described in TAT XML configuration file 
along with their interfaces (port numbers for IP 
sockets or file names for Unix domain sockets). 

Instances may be of two types: “env” (abstraction 
of test environment) and “model” (abstraction of 
system under test). In case of using TAT together 
with Sdl2cpp, this description is generated 
automatically. If TAT is used as stand-alone tool, 
the user has to provide it manually. 

• Message delimiter (if not provided by Sdl2cpp). 
• User-defined log format. TAT has two built-in 

formats of logs: logs in terms of MSC charts and 
plain text logs. But, if required, the user can define 
own log format. 

TAT has seamless integration with Sdl2cpp: Sdl2cpp can 
not only generate target code from SDL, but also completely 
configure TAT for testing the generated code. But even in case 
of using TAT together with Sdl2cpp, manual adjusting of test 
environment remains possible because TAT configuration can 
be split into two parts (stored in separate files): generated by 
Sdl2cpp and manually provided. Manually provided part has 
higher priority, so default environment settings (generated by 
Sdl2cpp) can be redefined by the user (if required). 

 

 
Fig. 4. Fragment of MSC log file with an error indication 

 
As soon as a test suite in target language is generated by 

TAT, it can be used for testing SUT. The results of testing can 
be observed in log files (an example of a log file fragment in 
MSC format is represented in Fig. 4).  

 

 
Fig. 5. Test report 

 
TAT tool called Offline Test Results Analyzer (OTRA) is 

responsible for “offline” test results analysis. It compares 
source MSC charts (the charts which were used for test suite 



generation) with logs in MSC format and generates a test 
report in HTML format. Fig.5 illustrates a test report example. 

Each line in a test report is a link to another HTML page 
with comparison details and failure description (if 
corresponding test failed). 

Described approach of automated test suites generation on 
the base of formal specifications can considerably reduce 
efforts and time of test cases preparation. Of course, this 
approach is not applicable to covering any requirement 
because sometimes requirements can not be expressed in 
terms of MSC charts or a sequence of key events. So, test 
engineer must understand the scope of its applicability and 
create tests for the not covered requirements manually. But, in 
practice (especially in telecommunication domain), majority 
of the requirements (especially functional requirements) can 
be automatically covered by tests in case of applying this 
technology. 

Automation of functional tests generation is a powerful 
feature of the described testing automation approach, but it 
can also be applied for checking that interaction between SUT 
and environment takes place in compliance with some 
standard. It is well-known that in telecommunication domain 
compliance with a standard is at least not less important than 
checking functional requirements.  

The underlying idea of the proposals about automation of 
conformance testing is similar to the idea of automation of 
functional testing, but has some peculiarities. 

IV. AUTOMATION OF CONFORMANCE TESTING  

Conformance testing is concerned with the assessment of 
the extent to which an implementation of system conforms to 
a specification. [14] 

The process of interoperability testing and conformance 
testing is usually time consuming and expensive. However it 
is essential because the cost of releasing a product (especially 
in telecommunication domain) that does not operate correctly 
is very much higher. 

 

 
Fig. 6. Conformance oracle 

 
And the problem here can be formulated as follows: if I 

have a SUT which interacts with test environment or with 
other system(s), how can I check whether this interaction takes 
place in accordance with some standard or not?  

It is not easy, but very important question. 

Another important question is: “Are there any 
inconsistencies in the standard’s specification?” 

 

 
Fig. 7. Conformance checking approach 

 
The proposing approach, illustrated in Fig. 7, tries to answer 

both of them. The first its step, verification, can answer the 
second question. Verification of a standard is not an easy task. 
Formalization of the standard’s specification is the most 
effort-consuming part of this step, and it can take much time. 
Unfortunately, formalization is a process which in common 
case can hardly ever been automated (because it is a process of 
requirements understanding and interpretation). However, 
verification can not only formally prove absence of errors, but 
also help us answer the first question. 

In case of using notation of basic protocols, formalized 
model is represented as a set of states and transitions between 
them, i.e. as a state machine. 
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This state machine can be used as an oracle if place it 
between SUT and test environment or between SUT and other 
system(s) (which conform the standard).  

So, the second step is generation of target code of this state 
machine and using it together with an agent for behavior 
observation (for example, a network sniffer for 
telecommunication domain). TAT code generation engine is 
going to be used for generation of the state machine code. 

Normally, when Sdl2cpp generates SUT’s target code from 
SDL, it also generates serialization and deserialization 
functions for each message which can be sent to the 
environment or received from the environment. These 
functions are both used on the SUT side and on the test 
environment side for encoding and decoding messages. So, it 
is not required for the user to define messages’ structure (and 
corresponding serialization/deserialization functions) twice. In 
other words, Sdl2cpp can automatically configure TAT and 
share encoding/decoding code with it. This makes message 
exchange transparent for the user who works on the “signals” 
level of abstraction and is not concerned about what is actually 
sent via sockets. However, observation of socket-level 
messages remains possible. The same idea is also applicable to 
the oracle which, of course, requires a means of mapping 
sockets-level messages to high-level signals. 

So, conformance oracle will consist of the following parts 
(as shown in Fig. 6): 

• State machine generated by TAT on base of 
standard's model in terms of basic protocols; 

• Deserialization code generated by Sdl2cpp; 
• Agent for behavior observation. 

The third step is testing. On the testing phase SUT and test 
environment communicate as usual (through signals exchange 
via network). And the only difference is presence of the 
conformance oracle which intercepts all the signals using 
network sniffer, decodes them using deserialization functions 
(provided by Sdl2cpp) and takes a decision about compliance 
with the standard. 

Decision about compliance with the standard is taken in 
accordance with the following algorithm: 

1. The oracle intercepts a message and tries to decode 
it. If the message can’t be decoded, it does not 
conform to the standard. 

2. If the message is successfully decoded, the oracle 
checks existence of any transition from its current 
state where condition of the transition is receiving 
this signal. If there is no such transition, the system 
does not conform to the standard. 

3. Then the oracle checks signal’s parameters. If 
parameters’ values are within admissible range, the 
oracle performs transition to the next state and 
waits for the next signal; otherwise, the system 
does not conform to the standard. 

The more test are executed with the conformance oracle, the 
more the user is confident that SUT conforms to the standard. 

V. CONCLUSION 

The developed approach of testing automation was 
successfully applied in several large-scale projects in 
telecommunication domain.  

The maximum benefit (cost and time savings; increase of 
quality) from this approach can be achieved in case of using it 
as a seamless part of the overall technology, represented in 
section 2. But usage of TAT as a stand-alone test suite target 
code generator from formal specifications remains possible, so 
described testing automation proposals are also applicable to 
other software development processes. 

Conformance testing automation proposals seem to be very 
promising because in spite of high complexity of standards 
formalization, automation of conformance testing together 
with standards verification can significantly increase product 
quality. 
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