Testing automation of projects in telecommunication
domain

Alexey Veselov, Vsevolod Kotlyarov
Saint-Petersburg State Polytechnic University, SBatersburg, Russia
a.veselov@ics2.ecd.spbstu.ru, vpk@ics2.ecd.spbstu.r

Abstract — This paper presents an integrated approach to
testing automation of telecommunication projects a@ng with
proposals to automation of conformance testing. Thanderlying
idea is to benefit from combining formal verification and testing
automation techniques in order to improve product gality.

I. INTRODUCTION

Testing is known to be an essential step in anyerod
industrial software development process. The ingme of
software testing and its impact on software quatiéy’t be
underestimated. To date, spending up to 40% ofrtsffon
testing is not uncommon for a software company.réfoee,
testing automation and testing efficiency — theuédss
addressed in this paper - are very important.

This paper describes a part of technology which linas
formal verification, testing and code generatiochteques in
order to improve software quality, reduce effortgl aosts.

This technology covers the whole software develagme

process which starts from the initial requiremeatsl goes
through formalization, verification, simulation, d®
generation and testing to a software product. €bkrtology’s
part, which is described below, relates to thenephes which
on the one hand can be used for automation of ifumadttests
generation, and on the other hand can be applied
conformance testing.

The underlying idea of the proposal is to benefdnf
presence of verification step in the technologyrifiation is
a powerful
software quality and formally prove absence of aket in
algorithm. But it also has another important adaget a
model is created on the verification step, and gath in the
model’s behavior tree can be considered as a patenst
case. The number of such paths in industrial-sgedgects is
enormous, so a special filtering technique is neglito obtain
suitable (optimal) test suite. This approach isliapple not
only to automation of functional tests generationt also for
automation of conformance testing (in case if a ehad the
corresponding standard is provided). An examplesach
standard is CDMA2000 [1]. CDMA2000 is a family o653

technique which can significantly impeov

This paper outlines the main principles of autordatest
suite generation on the base of formalized spetifos in the
language of basic protocols using the verificatmnl VRS [2,
3] and tests generation tool TAT [4].

II. TECHNOLOGY OVERVIEW

Despite the paper is focused on testing automaiéoh of
the technology, overview of the whole technologwiohis
required for proper understanding of applicatiomdmn of the
proposing ideas.

The technology is intended for automation of marafifdrts
in software development process as much as poséilyle
applying code generation techniques) and incregsioducts'
quality (because of combining formal verificatiomdaesting).

According to the technology chain, illustrated ifg.F2,
software development starts from understanding and
formalizing of the requirements. On the formalieatistep,
engineers create a model of the system in termbasic
protocols. Basic protocol is a formal descriptioh smme
action which shall be performed if the system godse a
certain state (pre-condition is satisfied), ancew istate of the
system after performing this action (post-conditidn other
words, basic protocol is a “small piece” of systerhehavior.
T%asic protocols are represented in the followintation:

OX :a(X) 019 = B(X)
where X is protocol parameters’ ligk, is a pre-condition,3
is post-condition angu is action;a , f and S may depend
on X. This is a Hoare’s triplet [5].

The formalism of basic protocols is based on tleot of
agents and environments with the insertion funcf@jnit was
proposed by A. Letichevsky et al. for creating sgstoehavior
models suitable for automated verification [7, @asic
protocol is just a small MSC chart. Fig. 1 illusés a basic
protocol example.

Two basic protocols can be concatenated when post-
condition of the first one is equal to pre-conditiof the
second one. All possible concatenations of basatopols
construct the model’s behavior tree. Each patlhim tree is a

mobile technology standards which use CDMA (Codgossible scenario of system’s behavior.

Division Multiple Access) channel access to senid,deoice,

and signaling data between mobile phones and des.s
Importance of compliance of any CDMA2000 device apti

site with this standard is obvious. In practicemptiance is
checked by rather significant amount of conformatess
which are prepared manually. Proposed approach
conformance testing allows avoiding manual
development by means of reusing artifacts of weatfon step.

Formalization is mostly manual work, but it cancalse
automated or simplified in some sense. For exantpéeuser
can perform formalization in terms of use casese(Case
Maps (UCM [9]) or Message Sequence Charts (MSC)]10]
an UML [11] model. Special tools are used for bgsmtocols
generation from UCM, MSC and UML.

tests The second step of the technology chain is vetifioa The

system’s model, represented in terms of basic poido is

verified against some properties using model chreokdhe
VRS tool.

A set of basic protocols can be interpreted ad afsstates
and transitions, i.e. as a state machine. Havistgt& machine
which describes system’s behavior, it is possibl@énerate
system’s logic code in a target language. But tliemo tool
which can generate executable code from basic gut#pso
intermediate representation is required. Specitioat

sequence of key impacts on the system under t&BE)(&nd
systems’ responses which cover a particular remans
(requirement may be covered by more than one “€hain
Creation of chains is a process of requirements
interpretation, so it is mostly manual work, espbgi if
requirements are presented in natural language.in€ha
creation is significantly simplified if customer gsides
requirements in formal notation, for example imierof UCM

Description Language (SDL [12]) was chosen to be thor MSC.

language of this intermediate representation. SBlrather
simple and well-known language for
machines. Presence of intermediate language makeasch
more convenient for the engineers to debug models.

So, the third step is conversion from basic prdwco

representation to SDL representation. This conweersis
performed by special tools.

As soon as SDL code is obtained, it is possiblgeioerate
code in target language. Generation of target cotiee fourth
step. A user has opportunity to choose any SDlatget code
translator, but in our practice we use Sdl2cpp beedt is
seamlessly integrated into the technology chait2cpg tool
is efficient and reliable translator from SDL to €+4Sdl2cpp
can generate configuration file for TAT (Test Autation
Toolset) with test environment description. So, case of
using Sdl2cpp together with TAT, test
configuring becomes transparent for a user (no @aefforts

required).

describing state

environment

PEE
CCEWie, idle) ;
[CCGW c.step = idle) &
[crocok = false)
XisCallllrtRedqg
F
_cre0k
POST
CCEW (e, idle)

S SIS

Fig. 1. Basic protocol

As soon as model's executable code is obtainedtestd
environment is configured, it is possible to rurstéeand
perform real-time simulation. It is also rather eenient to do
step-by-step simulation in IBM Rational SDL Suife8] with
tracking of system’s behavior in graphical mode.

The fifth step is creation of test coverage criteriModel in
terms of basic protocols is a behavior tree witlorerous
number (more precisely — infinite number) of potant
scenarios. It is impossible to cover this entieetwith tests,
so a filtering criterion is required. The user iigef to choose
any criterion, but usage of requirements coverag@rion
makes it is possible to generate relatively smedit tsuite
which covers functional requirements. This critari@quires
creation of “chains” for each requirement. “Chaiis’ a

Legend:
—» TAT _._p Sdl2cpp
—3 VRS .. » Manual
f”\\
i
L)
Formalization Basic / Verification
Al protocols |47
model
Model generation. - N~—_ _ _ _ _
»~ L | —"a
SDL MSC Tolerance
If" model) scenarios range
/" Model code e Test suite
1 - N .
. generation generatio
. Y
'_‘ Model in | Test suite in
C++ - v C++
Testing of a
model A
Lowering.

Production basic
protocols model

Product generatiop A‘\\ -

- N\

Trace generation

—_———
~

¥ R | R
SDL MSC Tolerance
//" model . scenarios range

I.’A Product code e Test suite
. Qgeneration . generatio

‘\‘ Productin | _| Test suite in
C++ - v C++
Testing of a
product

Fig. 2. Overall technology scheme

The sixth step is test scenarios generation. VRS uses

chains for guided search in model's behavior treal a
generates a trace if it can find a path with clakgy events.
As a result, a set of scenarios which cover funetio
requirements is generated. These scenarios aresegyed in
terms of MSC charts. For the requirements whichsiome
reasons can't be expressed in terms of chainseffample,

non-functional requirements), test cases shall beated
manually.

parameters with concrete values (if they contaimimlic
parameters).

TAT tools are used for generation of executablet tes VRS tool can work in two modes. The first one igular

environment code from MSC charts. So, the nextgsth)
step is generation of a test suite in a targetuagg using
TAT tools. This step also includes substitutionsginbolic
parameters of MSC scenarios with actual valuesntdkam
tolerance range.

The eight's step is running generated test suiéénagthe
model.

The technology chain consisting of the mentioneghtei
steps works fine when scale of a project is ratmall. But
when the project starts to grow, verification beesna bottle
neck because of the state explosion problem. ¢atifin of
industrial-scale projects requires abstracting frasome
details, therefore basic protocols model must Haildel after
verification and before production code generatidin.is
usually required to maintain two models within teope of
one project: high-level model which is used forifieation,
modeling and simulation, and production model wh&hsed
for product code generation. Each model requieswn test
suite.

So, the ninth step is detailing. This step is &sown as
lowering because the model is filled with low-lewd#tails.
Usually it implies adding signals’ parameters, aepig
functional stubs (when a complex behavior is englapsd in
one signal; e.g.: usage of “InitSession” signaltéad of
describing real sequence of messages for sessimtization)
with actual sequence of signals and adding omisigdals.
Lowering is another one manual part of the techgylo

As soon as the model is filled with low-level dé&tait can
be used for product code generation. To generabteupt
code, the user has to repeat steps 3 and 4 fodeteled
model. To generate a test suite for the produetuser has to
repeat steps 6 and 7 (step 5 is not required beazhans for
the high-level model are applicable to the detaitexdiel).

Ill. TESTING AUTOMATION

The whole technology chain consists of severalsst8feps
5, 6, 7 and 8 relate to tests preparation, gererasind
execution activities.

Tests preparation starts from requirements intéapom and
formulating coverage criteria in terms of “chairssequences
of key events. These chains are used as oraclguioled
search in model’s behavior tree. It is natural fratn infinite
number of possible system’s behaviors, test engingant to
choose reasonable quantity of scenarios which c&lgr
requirements. This result can be achieved in cdisesimg
chains: VRS tool will automatically generate cop@sding
traces (test cases). In the worst case, the nuofltest cases
will be equal to the number of chains, but in piEctsome
traces cover more than one requirement, so quanftitgsts is
usually less than quantity of chains. Special teaksponsible
for selecting minimal test suite from generatecceésa This
tool also marks the points (in MSC traces), whereecage of
each particular requirement starts and ends, aloitly the
places of key events.

As soon as a set of scenarios is selected accotdirige
coverage criteria, it is required to replace sdesar

model checking where all the parameters have ctacre
values. The second mode is called “symbolic”; iis tinode
tolerance range for each parameter is evaluated afiplying
each basic protocol, so generated MSC charts (dosha
contain symbolic parameters, and VRS provides thaines’
constraints (tolerance ranges). So, in case ofjusiymbolic”
mode, there is one additional step: replacemenM8Cs’
symbolic parameters with concrete values taken from
tolerance range.

One MSC with symbolic parameters is actually a et
equivalent behaviors (the same sequence of eventarfy
parameters’ values from tolerance range). So, ¢pkiTtto
account parameters’ constraints and dependencitgedre
parameters, the user can obtain a set of test soenaith
same sequence of events, but different parametaitgs.

A set of concrete values for each trace we will agirofile.
The user is free to choose any profile, but usudlfig
following profiles are chosen:

« “left edge” profile - all independent parameters
have minimum possible values (from the tolerance
range);

* ‘“right edge” profile - all independent parameters
have maximum possible values (from the tolerance
range);

« “middle” profile — all independent parameters have
arbitrary values (from the tolerance range);

« ‘“error” profile — at least one parameter has value
out of tolerance range. Test case with any “error”
profile shall always fail.

Scenarios with concrete parameters can be useddiosuite

generation.

(Source data \
— ATS Abstra_ct Tes
Parameters generator Suite
profiles _—\ '/_/
L __—
l e— [Code generation templ%le

MSC \
(symbolic N

parameterg) \j Target code in C++ \
— Env. MSC-

- description dependen
Environment| 4 code code
configuration
I

Fig. 3. Test suite generation

Test Automation Toolset (TAT) is used for genenattest
suites in target language on the base of sceneggsented
in terms of MSC charts and configuration XML filegth
environment description.
Test suite generation consists of several majqsste
e Analysis of XML configuration files and
generation of environment-specific code in target
language;

e Generation of Abstract Test Suite (ATS) -
representation of a test suite as a set of statgs a

Instances may be of two types: “env” (abstraction
of test environment) and “model” (abstraction of

transitions between them (state machine) in TCL. system under test). In case of using TAT together
ATS is generated on the base of MSC charts; with Sdl2cpp, this description is generated

« Generation of a test suite in target language en th automatically. If TAT is used as stand-alone tool,
base of ATS. the user has to provide it manually.

These steps are illustrated in Fig. 3 ¢ Message delimiter (if not provided by Sdl2cpp).
TAT has very flexible mechanism of code generation e User-defined log format. TAT has two built-in
templates. Using templates, TAT can be configured f formats of logs: logs in terms of MSC charts and
generation of test suite code in any language. ebtly, the plain text logs. But, if required, the user canimef

most powerful template is for C++, but several othe own log format.

languages are also supported, including Java $&,M& and TAT has seamless integration with Sdl2cpp: Sdl2cpp
TTCN-3 (only C++ code generation is considerechmscope not only generate target code from SDL, but alsmmetely
of this paper). configure TAT for testing the generated code. Bagrein case
Generated test suite interacts with a system uedéewia IP of using TAT together with Sdl2cpp, manual adjugtof test
sockets (both TCP and UDP are supported) or viax Unenvironment remains possible because TAT configuratan
domain sockets (both stream and datagram are degpoA be split into two parts (stored in separate filg®nerated by
user can specify which sockets to use in TAT canmfijon Sdl2cpp and manually provided. Manually providedt s
files along with the following settings: higher priority, so default environment settinger{grated by
« Initialization code which will be executed beforeSdl2cpp) can be redefined by the user (if required)
the beginning of each test case. Sometimes some
initialization of a system under test is requirec Igmpdoin
before running a test case. The code which e
responsible for moving SUT to its initial state kha consalecallGrant
be placed in corresponding section of TAT XML
configuration file (initialization section).
. X . . . 4 ERROR
* Finalization code which will be executed after ¢ "’\.{.T” — Tzﬂmmnateu_mmm.}./"'
test case is finished regardless of the verdi
(pass/fail). It is a good practice to free resosrce
when they are not in use any more, this can &
done in corresponding section of TAT XML
configuration file (finalization section). Fig. 4. Fragment of MSC log file with an error indiion
« Timeouts of waiting for incoming signals. The user
can specify how much time to wait for signal(s) in As soon as a test suite in target language is gateiby
milliseconds. If test environment does not receiv@AT, it can be used for testing SUT. The resultsesting can
the signal(s) which it expects (according to thée observed in log files (an example of a log filgment in
MSC scenario) within this time interval, MSC format is represented in Fig. 4).
corresponding test will be marked as failed. It is
possible to specify default timeout for all incomin AD&]YSiS I"Epﬂl"t
signals and, if necessary, redefine this paramet
for any particular incoming signal.
» Signals’ distinguisher code (if not provided by Suite "ProjName" config "Default”
Sdl2cpp). This code is responsible for
distinguishing incoming messages. In case of usir Total tests: 46 5
TAT together with Sdi2cpp, this code is generate Lassed: 82% Eabal.2
automatically. If TAT is used as stand-alone tool
the user has to provide this code manually.
e Signals’ sending/receiving code (if not provided by
Sdl2cpp). The user may provide own code fo

Y

@ wTest 1 Passed
S Test 2 Passed

serialization and deserialization of messages ar GwTest3 Passed
their parameters. In case of using TAT togethe o {Ebi‘i {:dsb'ﬂﬂ
with Sdl2cpp, this code is generated automatically = F;:LE l>::::d
If TAT is used as stand-alone tool, the user has o @Test7 Falled
provide this code manually. .5 Tack® Dacear

: o Fig. 5. Test t
« Instances and interfaces definition (if not prodde 9 estrepor

by Sdl2cpp). All the instances (used in MSCS) 1At tool called Offline Test Results Analyzer (OTRAS

must be described in TAT XML configuration file responsible for “offline” test results analysis. dompares

along with their interfaces (port numbers for 1Pqq 00 MSC charts (the charts which were usedefstr quite

sockets or file names for Unix domain sockets).

generation) with logs in MSC format and generatetest
report in HTML format. Fig.5 illustrates a test ogpexample.
Each line in a test report is a link to another HThage

with comparison details and failure description (if

corresponding test failed).

Described approach of automated test suites géoreran
the base of formal specifications caonsiderably reduce
efforts and time of test cases preparation. Of s®uthis
approach is not applicable to covering any requin@m

because sometimes requirements can not be expréssed

terms of MSC charts or a sequence of key events.teso
engineer must understand the scope of its applityabind
create tests for the not covered requirements nignBait, in
practice (especially in telecommunication domaimyjority
of the requirements (especially functional requieets) can
be automatically covered by tests in case of applyhis
technology.

Automation of functional tests generation is a pdule
feature of the described testing automation approhat it
can also be applied for checking that interactietween SUT

and environment takes place in compliance with some

standard. It is well-known that in telecommunicatidomain
compliance with a standard is at least not lesoitapt than
checking functional requirements.

The underlying idea of the proposals about autamatif
conformance testing is similar to the idea of awttiam of
functional testing, but has some peculiarities.

IV. AUTOMATION OF CONFORMANCE TESTING

Conformance testing is concerned with the assedsofen
the extent to which an implementation of systemfaons to
a specification. [14]

The process of interoperability testing and confamoe
testing is usually time consuming and expensivewéi@r it
is essential because the cost of releasing a prdespecially
in telecommunication domain) that does not opecateectly
is very much higher.

SUT

/Conformance oracle \ 2

I Deserialization codg,
< + - generated by

B

State machine, | Sdl2cpp Iy g
generated by TAT tH
base standard's | Agent for beh: 1= =

Agent for behavior
observation [«

(sniffer) /

Test
environment

model in terms of |
basic protocols :

Fig. 6. Conformance oracle

And the problem here can be formulated as folloivs:
have a SUT which interacts with test environmentwith
other system(s), how can | check whether this autéon takes
place in accordance with some standard or not?

It is not easy, but very important question.

Another important question is:
inconsistencies in the standard’s specifical

‘Are there

tion?”

Legend:

—» TAT _._p Sdl2cpp

——5 VRS ... » Manual

Standard’s

specification

Basic

' / e .
Formalizationa protocols |4~ Verification

model

Oracle code
generation

| Serialization/ |

I Loee
| deserialization code:
1

Oracle with sniffer in C++

I
Sniffing messages an
taking a decision abou
compliance to the standard

Test environment

| Serialization / | g

\ 4

Serialization /!

: deserialization) deserialization:
| code Testing code |
‘_ Product codé /
N generation .- 77"
Test sui T SDL
generation 1 model
MSC Tolerance ,‘
scenarios range 7
'_ \\ ,/f’roduct generation
-t = :\\\\ /
Trace generatiqn N

Production basic
protocols model

Fig. 7. Conformance checking approach

any

The proposing approach, illustrated in Fig. 7 sttie answer
both of them. The first its step, verification, canswer the
second question. Verification of a standard isaroeasy task.
Formalization of the standard’s specification i timost
effort-consuming part of this step, and it can takech time.
Unfortunately, formalization is a process whichdommon
case can hardly ever been automated (because jiirizcess of
requirements understanding and interpretation). él@n
verification can not only formally prove absenceeafors, but

also help us answer the first question.

In case of using notation of basic protocols, fdined
model is represented as a set of states and toansslietween

them, i.e. as a state machine.

This state machine can be used as an oracle ik gtac
between SUT and test environment or between SUTodret
system(s) (which conform the standard).

So, the second step is generation of target codeiobtate
machine and using it together with an agent forapih
observation (for example, a network sniffer
telecommunication domain). TAT code generation eags
going to be used for generation of the state macbade.

Normally, when SdI2cpp generates SUT's target dool@
SDL, it also generates serialization and desedtdin

The maximum benefit (cost and time savings; in@eafs
quality) from this approach can be achieved in cdsaesing it
as a seamless part of the overall technology, septed in
section 2. But usage of TAT as a stand-alone tgt farget
code generator from formal specifications remaimssiple, so

fordescribed testing automation proposals are alsbcapje to

other software development processes.

Conformance testing automation proposals seem tehe
promising because in spite of high complexity adnstards
formalization, automation of conformance testingether

functions for each message which can be sent to théth standards verification can significantly inase product

environment or received from the environment.
functions are both used on the SUT side and ontéke
environment side for encoding and decoding mess&gsit
is not required for the user to define messageststre (and
corresponding serialization/deserialization funesiptwice. In
other words, Sdl2cpp can automatically configureTTénd
share encoding/decoding code with it. This makessage
exchange transparent for the user who works oridigeals”
level of abstraction and is not concerned about ehactually
sent via sockets. However, observation of sochkettle
messages remains possible. The same idea is giboadye to
the oracle which, of course, requires a means gbping
sockets-level messages to high-level signals.

So, conformance oracle will consist of the follogiparts
(as shown in Fig. 6):

State machine generated by TAT on base
standard's model in terms of basic protocols;
Deserialization code generated by Sdl2cpp;
Agent for behavior observation.

The third step is testing. On the testing phase &bd test
environment communicate as usual (through signalkange
via network). And the only difference is presende tle
conformance oracle which intercepts all the signasing
network sniffer, decodes them using deserializafiorctions
(provided by Sdl2cpp) and takes a decision abontptiance
with the standard.

Decision about compliance with the standard is riake
accordance with the following algorithm:

1.

Thesguality.

REFERENCES

[1] CDMA Development Group - http://www.cdg.org/

[2] Drobintsev P.D. Integrirovannaia tehnologia sfeechenia kachestva

programmnih produktov s pomoshiu verifikacii i testania. Kand. dis.,

SPbGPU. 2006. 238 p.

[3] Letichevsky A., Kapitonova J., Letichevsky X., Volkov V., Baranov

S., Weigert T. Basic protocols, message sequerar¢éschnd the verification

of requirements specifications, Computer Netwofks International Journal

of Computer and Telecommunications Networking, \n& p.661-675, 5

December 2005.

[4] TAT User's Manual © 2001-2005 MOTOROLA.

[5] Hoare C.A.R. Communicating sequential procesBesntice Hall,

London, 1985.

(%?] Letichevsky A.A., Kapitonova J.V., Volkov V.AVyshemirskii V.V.,
etichevsky Jr. A.A. Insertion Programming // Cythetics and Systems

Analysis, Volume 39, Issue 1 (January 2003), p.86-2

[7] Letichevsky A.A., Kapitonova J.V., Volkov V.ALetichevsky Jr A.A.,

Baranov S.N., Kotlyarov V.P., Weigert T. System Sfieation with Basic

Protocols // Cybernetics and Systems Analysis, Meld1, Issue 4 (July

2005), p.479-493.

[8] Baranov S., Jervis C., Kotlyarov V., Leticheysk., and Weigert T.

Leveraging UML to deliver correct telecom applicas in UML for Real:

Design of Embedded Real-Time Systems by L.Lava@hdjartin, and B.

Selic (editors), pp. 323-342, Kluwer Academic Pshodirs, 2003.

[9] Recommendation ITU-T Z.151. User requirementation (URN),

11/2008.

[10] ITU Recommendation Z.120. Message Sequencet(MSC), 11/99.

[11] OMG Unified Modeling Language - http://www.onogg/spec/UML/2.2/

[12] ITU-T Recommendation Z.100, CCITT Specificatiand Description

Language (SDL), 03/93.

The oracle intercepts a message and tries to decqag IBM Rational SDL Suite - http:/www-

it. If the message can't be decoded, it does nét.ibm.com/software/awdtools/sdlsuite/

conform to the standard.

If the message is successfully decoded, the oraé]tép

[14] ETSI Conformance Test Specification -
:/Iportal.etsi.org/mbs/testing/conformance/confance.htm

checks existence of any transition from its current

state where condition of the transition is recaivin

this signal. If there is no such transition, theteyn
does not conform to the standard.
Then the oracle checks signal's parameters.

If

parameters’ values are within admissible range, the
oracle performs transition to the next state and
waits for the next signal; otherwise, the system

does not conform to the standard.
The more test are executed with the conformanceegréne
more the user is confident that SUT conforms tostaadard.

V. CONCLUSION

The developed approach of testing automation was

successfully applied in several
telecommunication domain.

large-scale prsjedh

