
Testing automation of projects in telecommunication
domain

Alexey Veselov, Vsevolod Kotlyarov

Saint-Petersburg State Polytechnic University, Saint-Petersburg, Russia
a.veselov@ics2.ecd.spbstu.ru, vpk@ics2.ecd.spbstu.ru

Abstract – This paper presents an integrated approach to

testing automation of telecommunication projects along with
proposals to automation of conformance testing. The underlying
idea is to benefit from combining formal verification and testing
automation techniques in order to improve product quality.

I. INTRODUCTION

Testing is known to be an essential step in any modern
industrial software development process. The importance of
software testing and its impact on software quality can’t be
underestimated. To date, spending up to 40% of efforts on
testing is not uncommon for a software company. Therefore,
testing automation and testing efficiency – the issues
addressed in this paper - are very important.

This paper describes a part of technology which combines
formal verification, testing and code generation techniques in
order to improve software quality, reduce efforts and costs.
This technology covers the whole software development
process which starts from the initial requirements and goes
through formalization, verification, simulation, code
generation and testing to a software product. The technology’s
part, which is described below, relates to the techniques which
on the one hand can be used for automation of functional tests
generation, and on the other hand can be applied for
conformance testing.

The underlying idea of the proposal is to benefit from
presence of verification step in the technology. Verification is
a powerful technique which can significantly improve
software quality and formally prove absence of mistakes in
algorithm. But it also has another important advantage: a
model is created on the verification step, and each path in the
model’s behavior tree can be considered as a potential test
case. The number of such paths in industrial-scale projects is
enormous, so a special filtering technique is required to obtain
suitable (optimal) test suite. This approach is applicable not
only to automation of functional tests generation, but also for
automation of conformance testing (in case if a model of the
corresponding standard is provided). An example of such
standard is CDMA2000 [1]. CDMA2000 is a family of 3G
mobile technology standards which use CDMA (Code
Division Multiple Access) channel access to send data, voice,
and signaling data between mobile phones and cell sites.
Importance of compliance of any CDMA2000 device and cell
site with this standard is obvious. In practice, compliance is
checked by rather significant amount of conformance tests
which are prepared manually. Proposed approach to
conformance testing allows avoiding manual tests
development by means of reusing artifacts of verification step.

This paper outlines the main principles of automated test
suite generation on the base of formalized specifications in the
language of basic protocols using the verification tool VRS [2,
3] and tests generation tool TAT [4].

II. TECHNOLOGY OVERVIEW

Despite the paper is focused on testing automation part of
the technology, overview of the whole technology chain is
required for proper understanding of application domain of the
proposing ideas.

The technology is intended for automation of manual efforts
in software development process as much as possible (by
applying code generation techniques) and increasing products'
quality (because of combining formal verification and testing).

According to the technology chain, illustrated in Fig. 2,
software development starts from understanding and
formalizing of the requirements. On the formalization step,
engineers create a model of the system in terms of basic
protocols. Basic protocol is a formal description of some
action which shall be performed if the system goes into a
certain state (pre-condition is satisfied), and a new state of the
system after performing this action (post-condition). In other
words, basic protocol is a “small piece” of system’s behavior.
Basic protocols are represented in the following notation:

)()(:)(XXX X βα µ  →∀

where X is protocol parameters’ list,α is a pre-condition, β

is post-condition and µ is action; α , µ and β may depend

on X. This is a Hoare’s triplet [5].
The formalism of basic protocols is based on the theory of

agents and environments with the insertion function [6]. It was
proposed by A. Letichevsky et al. for creating system behavior
models suitable for automated verification [7, 8]. Basic
protocol is just a small MSC chart. Fig. 1 illustrates a basic
protocol example.

Two basic protocols can be concatenated when post-
condition of the first one is equal to pre-condition of the
second one. All possible concatenations of basic protocols
construct the model’s behavior tree. Each path in this tree is a
possible scenario of system’s behavior.

Formalization is mostly manual work, but it can also be
automated or simplified in some sense. For example, the user
can perform formalization in terms of use cases (Use Case
Maps (UCM [9]) or Message Sequence Charts (MSC [10])) or
an UML [11] model. Special tools are used for basic protocols
generation from UCM, MSC and UML.

The second step of the technology chain is verification. The
system’s model, represented in terms of basic protocols, is

verified against some properties using model checker of the
VRS tool.

A set of basic protocols can be interpreted as a set of states
and transitions, i.e. as a state machine. Having a state machine
which describes system’s behavior, it is possible to generate
system’s logic code in a target language. But there is no tool
which can generate executable code from basic protocols, so
intermediate representation is required. Specification
Description Language (SDL [12]) was chosen to be the
language of this intermediate representation. SDL is rather
simple and well-known language for describing state
machines. Presence of intermediate language makes it much
more convenient for the engineers to debug models.

So, the third step is conversion from basic protocols
representation to SDL representation. This conversion is
performed by special tools.

As soon as SDL code is obtained, it is possible to generate
code in target language. Generation of target code is the fourth
step. A user has opportunity to choose any SDL to target code
translator, but in our practice we use Sdl2cpp because it is
seamlessly integrated into the technology chain. Sdl2cpp tool
is efficient and reliable translator from SDL to C++. Sdl2cpp
can generate configuration file for TAT (Test Automation
Toolset) with test environment description. So, in case of
using Sdl2cpp together with TAT, test environment
configuring becomes transparent for a user (no manual efforts
required).

Fig. 1. Basic protocol

As soon as model’s executable code is obtained and test

environment is configured, it is possible to run tests and
perform real-time simulation. It is also rather convenient to do
step-by-step simulation in IBM Rational SDL Suite [13] with
tracking of system’s behavior in graphical mode.

The fifth step is creation of test coverage criterion. Model in
terms of basic protocols is a behavior tree with enormous
number (more precisely – infinite number) of potential
scenarios. It is impossible to cover this entire tree with tests,
so a filtering criterion is required. The user is free to choose
any criterion, but usage of requirements coverage criterion
makes it is possible to generate relatively small test suite
which covers functional requirements. This criterion requires
creation of “chains” for each requirement. “Chain” is a

sequence of key impacts on the system under test (SUT) and
systems’ responses which cover a particular requirement
(requirement may be covered by more than one “chain”).

Creation of chains is a process of requirements
interpretation, so it is mostly manual work, especially if
requirements are presented in natural language. Chains
creation is significantly simplified if customer provides
requirements in formal notation, for example in terms of UCM
or MSC.

Fig. 2. Overall technology scheme

The sixth step is test scenarios generation. VRS tool uses

chains for guided search in model’s behavior tree and
generates a trace if it can find a path with chain’s key events.
As a result, a set of scenarios which cover functional
requirements is generated. These scenarios are represented in
terms of MSC charts. For the requirements which for some
reasons can’t be expressed in terms of chains (for example,

Testing of a
model

Test suite in
C++

Tolerance
range

MSC
scenarios

SDL
model

Product code
generation

Product in
C++

Testing of a
product

Product generation

Production basic
protocols model

Trace generation

Test suite
generation

Lowering

Legend:

TAT

VRS

Sdl2cpp

Manual

Basic
protocols

model

Requirements

Formalization

SDL
model

MSC
scenarios

Tolerance
range

Model in
C++

Test suite in
C++

Test suite
generation

Model generation

Model code
generation

Verification

non-functional requirements), test cases shall be created
manually.

TAT tools are used for generation of executable test
environment code from MSC charts. So, the next (seventh)
step is generation of a test suite in a target language using
TAT tools. This step also includes substitution of symbolic
parameters of MSC scenarios with actual values taken from
tolerance range.

The eight's step is running generated test suite against the
model.

The technology chain consisting of the mentioned eight
steps works fine when scale of a project is rather small. But
when the project starts to grow, verification becomes a bottle
neck because of the state explosion problem. Verification of
industrial-scale projects requires abstracting from some
details, therefore basic protocols model must be detailed after
verification and before production code generation. It is
usually required to maintain two models within the scope of
one project: high-level model which is used for verification,
modeling and simulation, and production model which is used
for product code generation. Each model requires its own test
suite.

So, the ninth step is detailing. This step is also known as
lowering because the model is filled with low-level details.
Usually it implies adding signals’ parameters, replacing
functional stubs (when a complex behavior is encapsulated in
one signal; e.g.: usage of “InitSession” signal instead of
describing real sequence of messages for session initialization)
with actual sequence of signals and adding omitted signals.
Lowering is another one manual part of the technology.

As soon as the model is filled with low-level details, it can
be used for product code generation. To generate product
code, the user has to repeat steps 3 and 4 for the detailed
model. To generate a test suite for the product, the user has to
repeat steps 6 and 7 (step 5 is not required because chains for
the high-level model are applicable to the detailed model).

III. TESTING AUTOMATION

The whole technology chain consists of several steps. Steps
5, 6, 7 and 8 relate to tests preparation, generation and
execution activities.

Tests preparation starts from requirements interpretation and
formulating coverage criteria in terms of “chains” – sequences
of key events. These chains are used as oracle for guided
search in model’s behavior tree. It is natural that from infinite
number of possible system’s behaviors, test engineers want to
choose reasonable quantity of scenarios which cover SUT
requirements. This result can be achieved in case of using
chains: VRS tool will automatically generate corresponding
traces (test cases). In the worst case, the number of test cases
will be equal to the number of chains, but in practice some
traces cover more than one requirement, so quantity of tests is
usually less than quantity of chains. Special tool is responsible
for selecting minimal test suite from generated traces. This
tool also marks the points (in MSC traces), where coverage of
each particular requirement starts and ends, along with the
places of key events.

As soon as a set of scenarios is selected according to the
coverage criteria, it is required to replace scenarios’

parameters with concrete values (if they contain symbolic
parameters).

VRS tool can work in two modes. The first one is regular
model checking where all the parameters have concrete
values. The second mode is called “symbolic”; in this mode
tolerance range for each parameter is evaluated after applying
each basic protocol, so generated MSC charts (scenarios)
contain symbolic parameters, and VRS provides their values’
constraints (tolerance ranges). So, in case of using “symbolic”
mode, there is one additional step: replacement of MSCs’
symbolic parameters with concrete values taken from
tolerance range.

One MSC with symbolic parameters is actually a set of
equivalent behaviors (the same sequence of events for any
parameters’ values from tolerance range). So, taking into
account parameters’ constraints and dependencies between
parameters, the user can obtain a set of test scenarios with
same sequence of events, but different parameters’ values.

A set of concrete values for each trace we will call a profile.
The user is free to choose any profile, but usually the
following profiles are chosen:

• “left edge” profile - all independent parameters
have minimum possible values (from the tolerance
range);

• “right edge” profile - all independent parameters
have maximum possible values (from the tolerance
range);

• “middle” profile – all independent parameters have
arbitrary values (from the tolerance range);

• “error” profile – at least one parameter has value
out of tolerance range. Test case with any “error”
profile shall always fail.

Scenarios with concrete parameters can be used for test suite
generation.

Fig. 3. Test suite generation

Test Automation Toolset (TAT) is used for generation test

suites in target language on the base of scenarios represented
in terms of MSC charts and configuration XML files with
environment description.

Test suite generation consists of several major steps:
• Analysis of XML configuration files and

generation of environment-specific code in target
language;

Source data

Parameters’
profiles

MSC
(symbolic

parameters)

Environment
configuration

MSC
(concrete

parameters)

ATS
generator

Abstract Test
Suite

Code generation template

script

script

Target code in C++

Env.
description

code

MSC-
dependent

code

• Generation of Abstract Test Suite (ATS) –
representation of a test suite as a set of states and
transitions between them (state machine) in TCL.
ATS is generated on the base of MSC charts;

• Generation of a test suite in target language on the
base of ATS.

These steps are illustrated in Fig. 3
TAT has very flexible mechanism of code generation

templates. Using templates, TAT can be configured for
generation of test suite code in any language. Currently, the
most powerful template is for C++, but several other
languages are also supported, including Java SE, Java ME and
TTCN-3 (only C++ code generation is considered in the scope
of this paper).

Generated test suite interacts with a system under test via IP
sockets (both TCP and UDP are supported) or via Unix
domain sockets (both stream and datagram are supported). A
user can specify which sockets to use in TAT configuration
files along with the following settings:

• Initialization code which will be executed before
the beginning of each test case. Sometimes some
initialization of a system under test is required
before running a test case. The code which is
responsible for moving SUT to its initial state shall
be placed in corresponding section of TAT XML
configuration file (initialization section).

• Finalization code which will be executed after a
test case is finished regardless of the verdict
(pass/fail). It is a good practice to free resources
when they are not in use any more, this can be
done in corresponding section of TAT XML
configuration file (finalization section).

• Timeouts of waiting for incoming signals. The user
can specify how much time to wait for signal(s) in
milliseconds. If test environment does not receive
the signal(s) which it expects (according to the
MSC scenario) within this time interval,
corresponding test will be marked as failed. It is
possible to specify default timeout for all incoming
signals and, if necessary, redefine this parameter
for any particular incoming signal.

• Signals’ distinguisher code (if not provided by
Sdl2cpp). This code is responsible for
distinguishing incoming messages. In case of using
TAT together with Sdl2cpp, this code is generated
automatically. If TAT is used as stand-alone tool,
the user has to provide this code manually.

• Signals’ sending/receiving code (if not provided by
Sdl2cpp). The user may provide own code for
serialization and deserialization of messages and
their parameters. In case of using TAT together
with Sdl2cpp, this code is generated automatically.
If TAT is used as stand-alone tool, the user has to
provide this code manually.

• Instances and interfaces definition (if not provided
by Sdl2cpp). All the instances (used in MSCs)
must be described in TAT XML configuration file
along with their interfaces (port numbers for IP
sockets or file names for Unix domain sockets).

Instances may be of two types: “env” (abstraction
of test environment) and “model” (abstraction of
system under test). In case of using TAT together
with Sdl2cpp, this description is generated
automatically. If TAT is used as stand-alone tool,
the user has to provide it manually.

• Message delimiter (if not provided by Sdl2cpp).
• User-defined log format. TAT has two built-in

formats of logs: logs in terms of MSC charts and
plain text logs. But, if required, the user can define
own log format.

TAT has seamless integration with Sdl2cpp: Sdl2cpp can
not only generate target code from SDL, but also completely
configure TAT for testing the generated code. But even in case
of using TAT together with Sdl2cpp, manual adjusting of test
environment remains possible because TAT configuration can
be split into two parts (stored in separate files): generated by
Sdl2cpp and manually provided. Manually provided part has
higher priority, so default environment settings (generated by
Sdl2cpp) can be redefined by the user (if required).

Fig. 4. Fragment of MSC log file with an error indication

As soon as a test suite in target language is generated by

TAT, it can be used for testing SUT. The results of testing can
be observed in log files (an example of a log file fragment in
MSC format is represented in Fig. 4).

Fig. 5. Test report

TAT tool called Offline Test Results Analyzer (OTRA) is

responsible for “offline” test results analysis. It compares
source MSC charts (the charts which were used for test suite

generation) with logs in MSC format and generates a test
report in HTML format. Fig.5 illustrates a test report example.

Each line in a test report is a link to another HTML page
with comparison details and failure description (if
corresponding test failed).

Described approach of automated test suites generation on
the base of formal specifications can considerably reduce
efforts and time of test cases preparation. Of course, this
approach is not applicable to covering any requirement
because sometimes requirements can not be expressed in
terms of MSC charts or a sequence of key events. So, test
engineer must understand the scope of its applicability and
create tests for the not covered requirements manually. But, in
practice (especially in telecommunication domain), majority
of the requirements (especially functional requirements) can
be automatically covered by tests in case of applying this
technology.

Automation of functional tests generation is a powerful
feature of the described testing automation approach, but it
can also be applied for checking that interaction between SUT
and environment takes place in compliance with some
standard. It is well-known that in telecommunication domain
compliance with a standard is at least not less important than
checking functional requirements.

The underlying idea of the proposals about automation of
conformance testing is similar to the idea of automation of
functional testing, but has some peculiarities.

IV. AUTOMATION OF CONFORMANCE TESTING

Conformance testing is concerned with the assessment of
the extent to which an implementation of system conforms to
a specification. [14]

The process of interoperability testing and conformance
testing is usually time consuming and expensive. However it
is essential because the cost of releasing a product (especially
in telecommunication domain) that does not operate correctly
is very much higher.

Fig. 6. Conformance oracle

And the problem here can be formulated as follows: if I

have a SUT which interacts with test environment or with
other system(s), how can I check whether this interaction takes
place in accordance with some standard or not?

It is not easy, but very important question.

Another important question is: “Are there any
inconsistencies in the standard’s specification?”

Fig. 7. Conformance checking approach

The proposing approach, illustrated in Fig. 7, tries to answer

both of them. The first its step, verification, can answer the
second question. Verification of a standard is not an easy task.
Formalization of the standard’s specification is the most
effort-consuming part of this step, and it can take much time.
Unfortunately, formalization is a process which in common
case can hardly ever been automated (because it is a process of
requirements understanding and interpretation). However,
verification can not only formally prove absence of errors, but
also help us answer the first question.

In case of using notation of basic protocols, formalized
model is represented as a set of states and transitions between
them, i.e. as a state machine.

Standard’s
specification

Basic
protocols

model
Verification Formalization

Oracle code
generation

Sniffing messages and
taking a decision about

compliance to the standard

Testing

Serialization /
deserialization

code

SUT

Serialization /
deserialization code

Oracle with sniffer in C++

Serialization /
deserialization

code

Test environment

Legend:

TAT

VRS

Sdl2cpp

Manual

Tolerance
range

MSC
scenarios

SDL
model

Product code
generation

Product generation

Production basic
protocols model

Trace generation

Test suite
generation

Conformance oracle

State machine,
generated by TAT on

base standard's
model in terms of
basic protocols

Deserialization code,
generated by

Sdl2cpp

Agent for behavior
observation

(sniffer)

Test
environment

SUT

T
es

tin
g

This state machine can be used as an oracle if place it
between SUT and test environment or between SUT and other
system(s) (which conform the standard).

So, the second step is generation of target code of this state
machine and using it together with an agent for behavior
observation (for example, a network sniffer for
telecommunication domain). TAT code generation engine is
going to be used for generation of the state machine code.

Normally, when Sdl2cpp generates SUT’s target code from
SDL, it also generates serialization and deserialization
functions for each message which can be sent to the
environment or received from the environment. These
functions are both used on the SUT side and on the test
environment side for encoding and decoding messages. So, it
is not required for the user to define messages’ structure (and
corresponding serialization/deserialization functions) twice. In
other words, Sdl2cpp can automatically configure TAT and
share encoding/decoding code with it. This makes message
exchange transparent for the user who works on the “signals”
level of abstraction and is not concerned about what is actually
sent via sockets. However, observation of socket-level
messages remains possible. The same idea is also applicable to
the oracle which, of course, requires a means of mapping
sockets-level messages to high-level signals.

So, conformance oracle will consist of the following parts
(as shown in Fig. 6):

• State machine generated by TAT on base of
standard's model in terms of basic protocols;

• Deserialization code generated by Sdl2cpp;
• Agent for behavior observation.

The third step is testing. On the testing phase SUT and test
environment communicate as usual (through signals exchange
via network). And the only difference is presence of the
conformance oracle which intercepts all the signals using
network sniffer, decodes them using deserialization functions
(provided by Sdl2cpp) and takes a decision about compliance
with the standard.

Decision about compliance with the standard is taken in
accordance with the following algorithm:

1. The oracle intercepts a message and tries to decode
it. If the message can’t be decoded, it does not
conform to the standard.

2. If the message is successfully decoded, the oracle
checks existence of any transition from its current
state where condition of the transition is receiving
this signal. If there is no such transition, the system
does not conform to the standard.

3. Then the oracle checks signal’s parameters. If
parameters’ values are within admissible range, the
oracle performs transition to the next state and
waits for the next signal; otherwise, the system
does not conform to the standard.

The more test are executed with the conformance oracle, the
more the user is confident that SUT conforms to the standard.

V. CONCLUSION

The developed approach of testing automation was
successfully applied in several large-scale projects in
telecommunication domain.

The maximum benefit (cost and time savings; increase of
quality) from this approach can be achieved in case of using it
as a seamless part of the overall technology, represented in
section 2. But usage of TAT as a stand-alone test suite target
code generator from formal specifications remains possible, so
described testing automation proposals are also applicable to
other software development processes.

Conformance testing automation proposals seem to be very
promising because in spite of high complexity of standards
formalization, automation of conformance testing together
with standards verification can significantly increase product
quality.

REFERENCES

[1] CDMA Development Group - http://www.cdg.org/
[2] Drobintsev P.D. Integrirovannaia tehnologia obespechenia kachestva
programmnih produktov s pomoshiu verifikacii i testirovania. Kand. dis.,
SPbGPU. 2006. 238 p.
[3] Letichevsky A., Kapitonova J., Letichevsky Jr., A., Volkov V., Baranov
S., Weigert T. Basic protocols, message sequence charts, and the verification
of requirements specifications, Computer Networks: The International Journal
of Computer and Telecommunications Networking, v.49 n.5, p.661-675, 5
December 2005.
[4] TAT User's Manual © 2001-2005 MOTOROLA.
[5] Hoare C.A.R. Communicating sequential processes, Prentice Hall,
London, 1985.
[6] Letichevsky A.A., Kapitonova J.V., Volkov V.A., Vyshemirskii V.V.,
Letichevsky Jr. A.A. Insertion Programming // Cybernetics and Systems
Analysis, Volume 39, Issue 1 (January 2003), p.16-26.
[7] Letichevsky A.A., Kapitonova J.V., Volkov V.A., Letichevsky Jr A.A.,
Baranov S.N., Kotlyarov V.P., Weigert T. System Specification with Basic
Protocols // Cybernetics and Systems Analysis, Volume 41, Issue 4 (July
2005), p.479-493.
[8] Baranov S., Jervis C., Kotlyarov V., Letichevsky A., and Weigert T.
Leveraging UML to deliver correct telecom applications in UML for Real:
Design of Embedded Real-Time Systems by L.Lavagno, G. Martin, and B.
Selic (editors), pp. 323–342, Kluwer Academic Publishers, 2003.
[9] Recommendation ITU-T Z.151. User requirements notation (URN),
11/2008.
[10] ITU Recommendation Z.120. Message Sequence Charts (MSC), 11/99.
[11] OMG Unified Modeling Language - http://www.omg.org/spec/UML/2.2/
[12] ITU-T Recommendation Z.100, CCITT Specification and Description
Language (SDL), 03/93.
[13] IBM Rational SDL Suite - http://www-
01.ibm.com/software/awdtools/sdlsuite/
[14] ETSI Conformance Test Specification -
http://portal.etsi.org/mbs/testing/conformance/conformance.htm

