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Static Program Verification

Static Verification — checking programs against specific properties
without executing them. Features:

+ all possible inputs are checked
+ certain methods can prove the program correct
− significant time and resource consumption
− expressiveness of checkable programs is limited
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Checking programs with Reachability Verifiers

Considerable amount of properties to check against can be reduced
to the reachability problem.

The reduction technique is known as program instrumentation:

1 modify the code to add transitions to the error state when
violation of the property is detected

2 check reachability of the error state

mutex_lock (&mtx); →
if (mtx ->locked ==1)

goto ERROR;
mtx ->locked = 1;
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Considerable amount of properties to check against can be reduced
to the reachability problem.

The reduction technique is known as program instrumentation:

1 modify the code to add transitions to the error state when
violation of the property is detected

2 check reachability of the error state
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↑
The way we modify the code is called model of the property
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Finite sets in property models

Many properties can be formulated in terms of sets.
Let’s dream how their models would look like if C language
contained first-class set type...

Entry point Set locked = ∅;

mutex_lock (&mtx); →
if (mtx ∈ locked)

goto ERROR;
locked ∪= mtx;

mutex_unlock (&mtx); →
if (mtx /∈ locked)

goto ERROR;
locked \= mtx;

Exit
if (locked != ∅)

goto ERROR;
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Finite sets in property models — memory allocation

Memory allocation can also utilize sets:

Entry point
Set allocated = ∅;
void* next_block = 1;

ptr=malloc(size); → allocated ∪= next_block;
next_block += 1;

free(ptr); →
if (ptr /∈ allocated)

goto ERROR;
allocated \= ptr;

Exit (check leaks)
if (allocated != ∅)

goto ERROR;
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Finite sets in property models — kernel lists

Special list structure that shouldn’t contain two equal pointers:

Entry point Set values = ∅;

list_add (&dev); →
if (&dev ∈ values)

goto ERROR;
values ∪= &dev;

list_del (&dev); → values \= &dev;
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CounterExample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Start with a coarse abstraction of the program
(ART — Abstract Reachability Tree)
Find a counterexample path if it exists
Transitions along the path are collected
A logical path formula is built
Satisfiability check (by solvers) determines if the error location
is feasible
Craig interpolation yields linear constraints that prove it
infeasible
Abstraction is refined, utilizing these constraints

The aim is to modify the marked parts of algorithm to allow
reasoning about finite sets.
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Supported operations with sets

The models in Linux Driver Verification project demonstrated
demand for the following operations:
Operation Effect

Set construction
S = SetEmpty() S ← ∅
S = SetAdd(T,expr) S ← T ∪ {x}; x — a value of expr
S = SetDel(F,expr) S ← F \ {y}; y — a value of expr

Set checking
z = SetInTest(S,expr) z ← x ∈ S ; x — a value of expr
z = SetEmptyTest(S) z ← S 6= ∅

Set is described by its constitution, a sequence of construction
operations that yield the set.
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The proposed way to construct path formula

Presence of an element in a set
The symbolic formula for presence check is built recursively,
based on sequence of construction operations.

The formula f (e, S), where e — expression checked for
presence, and S — constitution of a set:
S = SetEmpty() f (e, S) ≡ false
S = SetAdd(T,x) f (e, S) ≡ (e = x) ∨ f (e, T )
S = SetDel(F,y) f (e, S) ≡ (e 6= x) ∧ f (e, F )

Emptiness check
Emptiness check is based on observation that, in an empty set,
every element added should be later deleted
Abstraction refinement piggybacks on existing refinement
algorithms
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Features of the proposed approach

Small ART size
Each set construction operation requires just one ART node.
More complex formulæ
The formulæ to interpolate and be checked for Satisfiability
have larger CNF, and are more complex. Sometimes the
trade-off of ART size for formulæ size decreases analysis time
(see “Large Block Encoding” by Beyer et. al.).
Incapability to use set operations inside loops
If the value of an expression added to/removed from a set
changes after the operation, the algorithm may yield incorrect
result.
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Known approaches to reasoning about finite sets

Implement in C via a standard data structure
For example, as a Hash Table.
Shortcomings: the algorithm relies on verification of arrays,
lists and modular arithmetic. These features of C language are
outside of correctly verifiable subset.

Universal quantification trick
Branch unconditionally at each construction operation and
track special characteristical variables.
Shortcomings: exponential expansion of ART decreases
analysis speed dramatically; only a subset of operations may
be correctly verified.
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Performance evaluation

Memory allocation correctness was verified by “trick” algorithm and
the proposed one.

Leaks Ignored Checked
Algorithm Trick Proposed Trick Proposed
1 chunk 1 1 1 1
2 chunks 4 3 5 4
3 chunks 41 6 52 10
4 chunks 443 17 540 X
5 chunks 1289 36 1553 80
6 chunks > 2000 70 > 2000 X
7 chunks > 2000 200 > 2000 X
8 chunks > 2000 333 > 2000 X
9 chunks > 2000 X > 2000 X
10 chunks > 2000 X > 2000 X
15 chunks > 2000 X > 2000 X

(Time consumption in seconds. X - interpolation error)
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Conclusion

Results of the work:

A generic way to statically verify programs that contain finite
sets operation was proposed
Its limitations were described (no set operations within loops)
The algorithm proposed was developed as a patch to BLAST
tool
The known and proposed solutions were evaluated, given
BLAST platform as a basis

Conclusion: the algorithm proposed has the same scalability as the
known methods.
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Thank you

http://linuxtesting.org/ → LDV Program

shved@ispras.ru
http://coldattic.info/shvedsky/pro/syrcose10

:-)
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Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).
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How predicates are analyzed

Path formula undergoes Craig interpolation at certain cut-points

Sample program:

int main()
{

int x=0;
int y=5;
//cut -point
if (x>1){

error ();
}

}
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