

Abstract—Very actual task for the information system is
automatically user interface creating. Solution of this task
greatly decreases the information system development time.
There are various approaches for automatic creation of user
interfaces. In this article most popular approaches are surveyed
and their problems are described. Author suggests the hybrid
approach which allows minimizing the problems of existing
approaches.

Index Terms—user interfaces, code generation, information
systems, databases, objects inheritance

I. INTRODUCTION
he programming of some kinds of applications from
scratch is not reasonable. The continuous extension of the

libraries is widely used. The libraries are designed to solve
tasks that are isolated from general applications logic. That’s
why the approaches like solution of general tasks with
complex configuration and code generation is also popular.

The user interfaces (UI) creation is the one of the tasks
when programming from scratch is unreasonable. The rich UI
libraries solve only part of task. Some meta-information that
may be helpful to create UI already exists as the rule. It may
be database structure for example. On the one hand, UI very
frequently needs some project specific features. On other
hand, many UI parts are evidently reasonable for automatic
creation. The problem is to develop approach which allows to
automatically creating UI which can be extended by project
specific features.

The various approaches of the automatic creation UI for
information systems currently exist. Two approaches are the
most popular. The first approach uses the program code
generation which can be modified by programmer in a future.
The second approach uses runtime generation UI which is
based on the meta-information and the user settings probably.
Let’s consider these approaches in details.

II. EXISTING APPROACHES
The code generation based on the meta-information is

popular practice. This approach is automation of the process
which programmers are making manually in other case.
When programmer has the task to develop UI for some object
he should already has encountered with all parts of this task
in some degree. He will copy the parts of a code from his old

projects, correct identifiers and do some other correcting to
make it working together. Then first version will be done.
When we use the code generation most part of these actions
are executed automatically (Fig. 1). Automatic code
generation eliminates the nasty errors from lack of attention.
The problem of this approach is a lot of iterations that
development process has usually. These iterations may
contain meta-information correction. Used for the code
generating the meta-information may changes also. Then
there is question how to transfer these changes to already
generated and corrected by a programmer code. We can
generate the UI code again and manually correct it again
(Fig. 2). Otherwise we can manually correct UI code due to
meta-information changes (Fig. 3). In any case manually
correction is needed and this correction has a not minimal
volume.

Meta-information

Generated code

Customized code

Code generation

Manual code correction

Fig. 1. The scheme of the automatic UI code generation

Meta-information

Generated code

Customized code

Code generation

Manual code correction

New meta-information

New customized code

Changes in project
Design

Manual code
correction

Fig. 2. The scheme of the automatic UI code generation for meta-information
changing (the first alternative)

Information system user interfaces automatic
creation

Alexander Korotkov
Moscow Engineering Physics Institute

Moscow, Russia
email: aekorotkov@gmail.com

T

Meta-information

Generated code

Customized code

Code generation

Manual code correction

New meta-information

New customized code

Changes in project
Design

New generated code

Code generation

Manual code correction

Fig. 3. The scheme of the automatic UI code generation for meta-information
changing (the second alternative)

The second approach doesn’t use the manual code

correction and includes all information needed to configure
UI into meta-information. In this approach we have not
problem of transferring changes from previous approach
because manual generated code correction is not used there.

Databases administration tools use a simple
implementation of this approach. These tools provide a
viewing and editing interface for each table of a database. The
more complex example is the administration generator of
Symfony PHP Framework [1].

In this approach any specific UI customizations must be
covered by the meta-information and generator possibilities.
So if some new sort of UI customization is needed then meta-
information and generator must be extended to cover such
customization.

The most serious problem of this approach is that
reprogramming a UI generator is frequently needed. It may
produce the new generator functions to be appropriate to
specific project needs but doesn’t solve the general problems.
In this case the generator design may suffer.

Meta-information

UI

Runtime UI generation

Fig. 4. The scheme of the runtime UI generation.

III. PROPOSED APPROACH
Author proposes the hybrid approach when generated code

and manual corrections are logically separated. When the
meta-information is changed than the generated code will be
generated again but existing manual corrections do not
require any changes or these changes will be minimal. To
implement this approach the two tasks should be solved:
1) Code generator should be flexible enough to generate the

application which has a skeleton which doesn’t require
the changes during the customization. Because it would
be problematical to implement logically separation of
manual corrections which include the application
restructure.

2) The mechanism of separation of generated application
and manual changes should be found.

For the separation of the generated application and the
manual changes the inheritance mechanism is proposed. In
this approach for each automatically created UI component
the two classes are generated (Fig. 5). The first class is
automatically generated UI component. The second class
inherits the first class and it is empty initially. Programmer
can manually fulfill the second class for UI component
customization. When meta-information is changed than the
first class will be regenerated but second class do not require
any changes or these changes will be minimal and dealing
with the manually added features (Fig. 6). This approach is
very similar to popular approach in the Object Relation
Mapping (ORM) [2] software where base classes of persistent
objects are generated and derived class can be manually
customized. Let’s consider how this approach can be applied
to very usual UI components of information system such as
the grid and form.

Meta-information

Base class

Customized
derived class

Code generation

Manual code correction

Empty
derived class

Code generation

Fig. 5. The scheme of the hybrid approach of a UI generation

Meta-information

Base class

Customized
derived class

Code generation

Manual code correction

Empty
derived class

Code generation

New meta-informationChanges in project
Design

Code generation

New base class

New customized
derived class

Manual code
correction

Fig. 6. The scheme of the hybrid approach of a UI for meta-information
changing

IV. IMPLEMENTATION
To implement this approach the Web-interface which uses

the Javascrit-framework ExtJS [3] is generated. The
generated class for gird is derived class from the Ext.Grid.
This class contains configuration of columns, render methods
of columns, appearance configurations methods of columns
and UI objects for cell editing. The derived class can redefine
these configurations, methods and objects. Objects in base
class are defined by the configurations without the explicit
constructor call. It helps to avoid the excess of the objects
creation when they are redefined in the derived class. The

generated class for form inherits Ext.FormPanel. This class
contains UI objects using for editing of the form data. The
derived class can redefine these objects. Similar to the grid
base class the objects are defined by their configurations.
Derived classes can contain additional methods and
properties which implements extended inner logic.

V. CONCLUSION
The one of problems of automatic UI creation is the

developing approach which allows automatically creating UI
which may be extended by the project specific features.
Various approaches for automatic creation of user interfaces
(UI) for information systems currently exist. The one of these
approaches uses the program code generation. There is a
problem in this approach when meta-information is changed.
Then manually changes are required. These changes may
concern the one more UI component customization or the
manually transfer of the meta-information changes to
program code. Other approach is runtime UI generation. The
most serious problem of this approach is that interface is
strictly limited by laying therein customization possibilities.
Reprogramming some feature of such UI is difficult. Author
proposes the mixed approach when inheritance is used to
separate generated application and manual changes. The two
classes are generated for each UI component. The first class is
automatically generated UI component. The second class
inherits the first class and it is initially empty. Programmer
can manually customize the second class. When meta-
information is changed the base class is regenerated only and
the manual changes in derived class are minimal. This mixed
approach make possibility for the minimizing of the problems
of the surveyed approaches for the automatic UI generation.
This approach was proved to be functional.

REFERENCES
[1] Symfony Open-Source PHP Web Framework, http://www.symfony-

project.org/
[2] Propel ORM PHP framework, http://propel.phpdb.org/trac/
[3] Symfony Admin Generator, http://www.symfony-

project.org/book/1_2/14-Generators#Administration

