
 1

Abstract—Computer game rules development is one of the

weakly automated tasks in game development. This paper gives
an overview of the ongoing research project which deals with
automation of rules development for turn-based strategy
computer games. Rules are the basic elements of these games.
This paper proposes a new approach to automation including
visual formal rules model creation, model verification and model-
based code generation.

Index Terms—Automation, Games, Formal Languages,
Software Verification and Validation

I. INTRODUCTION

OMPUTER games are one of the most dynamic and rapidly
evolving fields of information technology. Games are

widely used in entertainment, education and training of
personnel [1]. Still the percentage of successful projects in
computer game industry is very low [2]. Low level of
automation is one of the reasons of the problem. Game rule
development is one of the weakly automated tasks. Game rule
development includes rule design, rule-based code and data
generation and results verification [3].

In this paper we define game rules as the definition of a
game world entities, entity interaction rules, the main goal of
the game, secondary goals, start conditions, winning
conditions and a player state definition.

There is a special role of game designer in a game
development team [3, 4], who is responsible for game rules
design. She frequently has no technical background. In order
to avoid confusion between a game designer and a software
designer roles we’ll use hereinafter the term “designer” for a
game designer.
 A game rules definition usually consists of several large text
documents and a set of tables. Designers use text editing tools
and spreadsheets as automation tools. The typical process of a
game rules definition is shown in Figure 1

Manuscript received March 14, 2008. E. A. Pavlova is PhD student at the

Cybernetics Department, Moscow Engineering-Physics Institute (National
Nuclear Research University), Moscow, Russia (phone: +7-906-723-1189; e-
mail: elena.pav@gmail.com).

The research is supervised by M. V. Sergievsky, PhD, associate professor
at the Cybernetics Department, Moscow Engineering-Physics Institute
(National Nuclear Research University), Moscow, Russia (e-mail:
maxim.sergievsky@light-site.ru).

Fig.1. Computer game rule development process.

Voluminous (up to several thousand pages [3]) and ill-

structured rules definitions are difficult and time-consuming to
create, modify and maintain. An informal rules formulation
complicates rules development automation, automatic rule-
based code and data generation and rules verification,
particularly rules balance checking and balancing (balance
problem will be discussed further).

Some designers try to master general-purpose modeling and
programming languages and corresponding modeling
environments to solve the automation problem (this approach
is described in detail in [3, 4]).

Special-purpose game-oriented development environments
are used as an alternative (see for example [5-9], Torque
Engine Advanced
(www.garagegames.com/products/torque/tgea/features/), FPS
Creator (www.darkgamestudio.com), NeoAxis Engine
(www.neoaxisgroup.com), Offset Engine
(www.projectoffset.com/game.html), Unreal Engine
(www.unrealtechnology.com), C4 Engine
(www.terathon.com/c4engine)). These tools frequently need a
complex customization and add-in programming. The majority
of tools don’t allow for game genre-specific development, thus
loosing long reusable experience. The rules definition is mixed
with the definition of the graphics of the game, and in some
cases with the definition of game artificial intelligence
elements. Thus, it is difficult to modify, analyze, verify and
reuse game rules independently. The rapid game rules
executable prototype generation becomes almost impossible.

The tools under discussion don’t allow automatic rules
verification. Design-time errors could be caught at the
implementation stage or later. These errors are usually treated
by a manual rule definition documents review and tedious
testing [3, 4].

The above demonstrates the urgency of development of the
new approach to game rules automation. The goal of this paper
is to develop an approach allowing automation of the whole
game rules development cycle – from formal visual rule
design, through rule verification, to rule-based code and data

The Formal Approach to Computer Game Rule
Development Automation

Elena A. Pavlova

C

 2

generation. The approach should consider the domain-specific
experience of the particular game genre. We took the turn-
based strategy (TBS) game genre [3] for our research as game
rules are the critical part for a game of this genre. The key task
in TBS game development is game rules development [4].

 As far as the author of this paper is concerned the
creation of the rule development environment supporting
visual game rule representation as a single formal model,
automatic formal verification of this model and model-based
automatic code and data generation is a new approach to game
rules development automation. Formal domain-specific
languages weren’t used for TBS game rules definition before.
Static analysis and formal property monitoring weren’t used
for computer game rules verification.

II. FORMAL BACKGROUND

A. The Turn-Based Strategy Game Rule Description
Language

The developed language is domain-specific (DSL) [10], i.e.
it considers a specificity of turn-based strategy computer
games. The language allows entity definition for the problem
domain of the concrete game (notably entity data and
behavior); behavior constraints; entity relationships and
reactions of entities to the other entity behavior.

Entities are represented as objects in the language. Entity
data correspond to object properties, and behaviors correspond
to methods. Object orientation allowed more flexibility and
simplicity compared to class orientation. The language type
system was developed. The language type system includes
simple types for evaluation of constraints and game genre-
specific types (types for the turn-based strategy domain). The
type system provided the necessary level of abstraction and
allowed to separate the object specification from the
implementation. Types are also used for model error detection.

The language is prototype-based [12]. The new (clone)
object maintains the independent copy of properties, methods
and the link to the initial (prototype) object. An object may
have only one prototype object. The modification of prototype
object doesn’t influence the clone object and vice versa. The
main object modification method is property and method
update. The specified prototyping mechanism allowed object
elements reuse and seems to be the natural object-creation
mechanism for the turn-based strategy games domain.

The language syntax was formally defined using a context-
free LL(1) grammar [13]. Both textual and graphical notations
for the language are available. We defined the formal
denotational semantics [13] for the language, using the λς –
calculus [12] for denotats and elements of Hoare logic [13] for
precondition and postcondition behavior constraints.
Conditions described in Hoare logic are used for model
consistency checking and correct method invocation planning
in game scenarios not for verification by deduction analysis.
Entities react to the behavior (i.e. method invocation) of other
entities by means of the special methods called reactors.

Several reactors may be attached to one method. Reactor
execution changes the state of the game. Reactors’
preconditions and postconditions depend on the game state.
Thus the reactors invocation order is important. Reactors’
invocation algorithm considers reactors’ preconditions and
postconditions to execute as much reactors as possible. The
developed language is described in detail in [11].

B. Turn-Based Strategy Game Rule Verification

Design-time game rule verification allows incorrect rule
detection and following correction prior to implementation.
This paper defines a correct rules model as consistent and
balanced. The rules model consistency is defined as syntactic
and semantic interface consistency of objects constituting the
model. Model consistency guarantees the correct interaction of
objects. The applied consistency checking method is fully
described in [14].

Balance is a game domain-specific concept. In general it
means rules fairness [3]. The rules of a particular game are fair
if the player success depends only on his abilities. Concrete
definitions of balance are given in [3, 4]. The example of a
misbalanced game is a game having unequal start conditions
for players, giving one player the advantage allowing winning
no matter what other players do. Rules balance verification is a
key task in TBS game development [3]. In this paper rules are
considered to be balanced if none of the competing sides
defined by the rules has an advantage; there are no invincible
troops and the result of the game is independent of who moved
first. In this paper rules balance is verified by means of formal
properties monitoring [15].

III. THE PROTOTYPE RULES DEVELOPMENT ENVIRONMENT

The architecture of the designed rule development
environment is considered in this section. The architecture
model is illustrated in Figure 2. The arrows connecting model
elements represent dataflows. The rules development
environment consists of the graphical user interface allowing
visual game rules model creation, the rules verification tool,
the rules translator and the data (rules models) storage.

 3

Fig. 2. The rules development environment architecture.

The graphical user interface enables visual rules definition

in the rules model editor. Rules are defined using the graphical
language notation. The example screenshot of the prototype
rules development environment is shown in Figure 3.

Fig. 3. The rules development environment and the example rule model.

The toolboxes contain all necessary language graphical

primitives. Model element properties could be customized in
the property editor. The model description is stored in the
textual language notation.

 The verification tool checks for rules model consistency
and balance using methods defined in the section I.B. The
translator transforms the verified textual rules representation
into the C++ code. This programming language is considered
to be the most popular for game development.

 We developed the prototype rules development
environment for turn-based strategy game rule development
support. The prototype was developed using Microsoft Visual
Studio 2008 SDK that enabled using managed code and rapid

language and visual modeling tool creation.

IV. RELATED WORK

There are several approaches reported in literature for
dealing with the game rules development automation problem.
Moreno-Ger et al. [5] consider adventure games creation for
educational purposes. The textual adventure game-specific
language and the corresponding interpreter are created. One
will need to master the textual notation of the language to use
the proposed environment. That might complicate a game
designer’s job. Rule verification is not considered. Moreno-
Ger et al. [6] extend the environment proposed in [5] by new
reusable adventure game-specific entities.

Hu [7] also considers adventure games for education. The
proposed education model describes education roles (a
teacher, a student, a course-book, etc.). The education model-
based TorqueEngine script extension is developed. The rules
are stored in several files using basic TorqueEngine principles.
Rule verification is not considered. The educational adventure
game development is significantly restricted by the education
model proposed.

 Furtado et al. [8] suggest an approach and a general
framework for game development. The informal visual
modeling language is defined and the corresponding tool is
created. The language is intended to describe game rules,
game graphics and sound. The language operates the notions
of “game state”, “program”, “audio component”, etc.. Two
layers of abstraction are mixed in a single game model (the
game components layer and the specific component object
model layer). That may complicate game designer’s job. The
proposed framework supports the model inspection for states
reachability, states existence and constraints existence.
Balance checking is not supported.

Amory [9] deals with educational quest and adventure
games development automation. The approach includes the
development of interface library encapsulating concepts from
the corresponding game genre domains. An educational quest
or an adventure game could be created implementing the
interfaces of this library. Rules verification is not considered.

 Thus, the key advantages of our approach is separation of
the rules and the graphics definitions, the design-time rules
verification possibility (including balance verification) and
turn-based strategy game genre specificity consideration.

V. CONCLUSIONS AND FUTURE WORK

In the previous sections we presented a detailed description
of the new approach to game rule development automation for
the turn-based strategy game genre. The approach includes the
development of a visual formal rule description language, a
formal rule verification method and a rules development
environment supporting single formal rule model creation,
verification and rule-based executable prototype generation.
Following this approach we developed the necessary formal

 4

basis and the prototype tool for game rules development. The
prototype considers turn-based strategy game-specific
experience, allows rule balance verification, rapid rules
prototype development and rule reuse.

The developed language simplifies rules development. The
application of domain-specific languages to TBS rules
definition is a new approach to TBS development. The
application of formal verification at design-time allowed error
detection prior to implementation.

 The main advantages of the proposed approach are as
follows: rules definition and game graphics definition
separation, rules verification automation and TBS genre-
specific knowledge consideration.

 Additional approach improvements include further
development of the balance verification method. We are going
to broaden the definition of balance and check for the so-
called dynamic balance [3], i.e. the balance at every turn of the
game. So players could be guaranteed positive experience
throughout the game. We plan the extension of the language
type system and the object cloning mechanism revision.
Finally, it is planned to extend the approach to the real-time
strategy game genre which is very similar to the turn-based
strategy genre. This will introduce a concept of mission
(missions do not exist in turn-based strategies) and will lead to
complex time-constraints consideration. It is expected that our
new results will facilitate the development of a development
environment for strategy games creation.

REFERENCES

[1] M. J. Taylor, M. Baskett, G. D. Hughes, S. J. Wade, “Using soft systems
methodology for computer game design,” Systems Research and
Behavioral Science, #24., pp. 359-368, 2007.

[2] M. Brydon, A. Gemino, “Classification trees and decision-analytic
feedforward control: a case study from the video game industry,” Data
Mining and Knowledge Discovery, vol. 17 , Issue 2, pp. 317–342, 2008

[3] A. Rollings, D. Morris, Game Architecture and Design. A New Edition.
Indianapolis: New Riders Publishing, 2004.

[4] G. Wihlidal, Game Engine Toolset Development. Boston, MA:
Thomson Course Technology PTR, 2006.

[5] P. Moreno-Ger, I. Martinez-Ortiz, J. L. Sierra, B. Fernandez-Manjon,
“Language-driven development of videogames: the <e-Game>
experience,” Entertainment Computing - ICEC 2006, pp. 153-164,
2006.

[6] P. Moreno-Ger, J. L Sierra., I. Martinez-Ortiz, B. Fernandez-Manjon, “A
documental approach to adventure game development,” Science of
Computer Programming, vol. 67 , Issue 1, pp. 3-31, Jun. 2007.

[7] W. Hu, “A reusable eduventure game framework,” Transactions on
Edutainment I , pp. 74-85, 2008.

[8] A. W. B. Furtado, A. L. M. Santos, G. L. Ramalho, “A computer games
software factory and edutainment platform for Microsoft .NET,” IET
Software, vol. 1, Issue 6, pp. 280 – 293, Dec. 2007.

[9] A. Amory, “Game object model version II: a theoretical framework for
educational game development,” Educational Technology Research and
Development, vol. 55, Number 1, pp. 51 – 77, Feb. 2007.

[10] J. Greenfield, K. Short, Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools, 2004.

[11] E. A. Pavlova, “Design of formal domain-specific language for
computer game rules development for turn-based strategy game genre,”
Computer and Information Technology Reporter, Feb. 2009. (in
Russian).

[12] M. Abadi, L. Cardelli, A Theory of Objects, 1996.

[13] P. D. Mosses (2002). Fundamental Concepts and Formal Semantics of
Programming Languages – An Introductory Course. [Online]. Available:
http://wiki.daimi.au.dk/dSprogSem-01, 2002.

[14] A. V. Gavrilov, E. A. Pavlova, “Functional interface analysis for
formalization of complex information system design,” Information
Technologies, #9, pp. 9-15, 2008. (in Russian).

[15] V. V. Kulyamin, “Software verification methods,” Russian State
Analytical-Review Articles Contest for Priority Concept “Information-
Telecommunication Systems, 2008. (in Russian.).

