The Formal Approach to Computer Game Rule
Development Automation

Elena A.

Abstract—Computer game rules development is one of the
weakly automated tasks in game development. Thisaper gives
an overview of the ongoing research project which ehls with
automation of rules development for turn-based streegy
computer games. Rules are the basic elements of seegames.
This paper proposes a new approach to automation a@uding
visual formal rules model creation, model verificaion and model-
based code generation.

Index Terms—Automation, Games, Formal
Software Verification and Validation

Languages,

I. INTRODUCTION

COMPUTER games are one of the most dynamic and rapidR/r
evolving fields of information technology. Gamese ar

widely used in entertainment, education and trginiof
personnel [1]. Still the percentage of successfaigets in

Pavlova

Designer
Designer Teiters Designer Piogrammers
[Rt ' 1
Rules Desigr Rule'sl De§|gr Rule-based Game F’rototype
r Verification Implementatior
A

t)
Text editor spreadsheet Development Environment

Fig.1. Computer game rule development process.

Voluminous (up to several thousand pages [3]) dhd i
structured rules definitions are difficult and thioensuming to
create, modify and maintain. An informal rules fatation
complicates rules development automation, automatie-
based code and data generation and rules verdficati
particularly rules balance checking and balancibglance
oblem will be discussed further).

Some designers try to master general-purpose nmodatid
programming languages and corresponding modeling
environments to solve the automation problem (#mproach

computer game industry is very low [2]. Low levef o IS described in detailin [3, 4]).

automation is one of the reasons of the problemméaule
development is one of the weakly automated tasksaésrule
development includes rule design, rule-based codk data
generation and results verification [3].

In this paper we define game rules as the defmitd a
game world entities, entity interaction rules, thain goal of
the game, secondary goals, start conditions,
conditions and a player state definition.

Special-purpose game-oriented development envirotsme
are used as an alternative (see for example [SF8tgue
Engine Advanced
(www.garagegames.com/products/torque/tgeal/feajureBPS

Creator (www.darkgamestudio.com), NeoAxis Engine

(www.neoaxisgroup.com), Offset Engine
winniiwww. projectoffset.com/game.html), Unreal Engine

(www.unrealtechnology.com), C4 Engine

There is a special role of game designer in a gan@ww.terathon.com/c4engine)). These tools freqyended a

development team [3, 4], who is responsible for gaules
design. She frequently has no technical backgrolmarder
to avoid confusion between a game designer andtaese
designer roles we'll use hereinafter the term “gesi” for a
game designer.

A game rules definition usually consists of selinae text
documents and a set of tables. Designers use déitgetools
and spreadsheets as automation tools. The typicaégs of a
game rules definition is shown in Figure 1

Manuscript received March 14, 2008. E. A. Paviav&hD student at the
Cybernetics Department, Moscow Engineering-Physistitute (National
Nuclear Research University), Moscow, Russia (pheiie906-723-1189; e-
mail: elena.pav@gmail.com).

The research is supervised by M. V. Sergievsky, ,RisBociate professor
at the Cybernetics Department, Moscow Engineerimgsies Institute
(National Nuclear Research University), Moscow, ®&as (e-mail:
maxim.sergievsky@light-site.ru).

complex customization and add-in programming. Tlagonity

of tools don't allow for game genre-specific deystent, thus
loosing long reusable experience. The rules defimis mixed
with the definition of the graphics of the gamedadn some
cases with the definition of game artificial inigdince
elements. Thus, it is difficult to modify, analyzegrify and
reuse game rules independently. The rapid games rule
executable prototype generation becomes almostdsilple.

The tools under discussion don't allow automatitesu
verification. Design-time errors could be caught athe
implementation stage or later. These errors arallysweated
by a manual rule definition documents review andicias
testing [3, 4].

The above demonstrates the urgency of developnighto
new approach to game rules automation. The gaai®paper
is to develop an approach allowing automation ef Whole
game rules development cycle — from formal visuale r
design, through rule verification, to rule-basedle@and data

generation. The approach should consider the desmegnific
experience of the particular game genre. We toektthin-
based strategy (TBS) game genre [3] for our rebeasagame
rules are the critical part for a game of this gefihe key task
in TBS game development is game rules developrdént [

Several reactors may be attached to one methodctdrea
execution changes the state of the game. Reactors’
preconditions and postconditions depend on the gstaie.
Thus the reactors invocation order is importantadiers’
invocation algorithm considers reactors’ precowodii and

As far as the author of this paper is concernesl tlpostconditions to execute as much reactors ashi@s$he

creation of the rule development environment sufippr
visual game rule representation as a single formadel,
automatic formal verification of this model and rbtased
automatic code and data generation is a hew apprtoagame
rules development automation. Formal
languages weren't used for TBS game rules defimibiefore.
Static analysis and formal property monitoring wéreised
for computer game rules verification.

Il. FORMAL BACKGROUND

A. The Turn-Based Strategy Game Rule Description

Language

The developed language is domain-specific (DSL],[1L6.
it considers a specificity of turn-based strategymputer
games. The language allows entity definition fag groblem

domain-specifi

developed language is described in detail in [11].

B. Turn-Based Strategy Game Rule Verification

Design-time game rule verification allows incorracte
detection and following correction prior to implemtetion.
This paper defines a correct rules model as camtisind
balanced. The rules model consistency is defineslyakactic
and semantic interface consistency of objects datieg the
model. Model consistency guarantees the correetdntion of
objects. The applied consistency checking methodully
described in [14].

Balance is a game domain-specific concept. In gerier
means rules fairness [3]. The rules of a particgéane are fair
if the player success depends only on his abiliti&sncrete
definitions of balance are given in [3, 4]. The rexde of a
misbalanced game is a game having unequal staditmoTs
for players, giving one player the advantage alhgwivinning

domain of the concrete game (notably entity datal a0 matter what other players do. Rules balancéication is a

behavior); behavior constraints; entity relatiopshiand
reactions of entities to the other entity behavior.

Entities are represented as objects in the languaggty
data correspond to object properties, and behag@mrespond
to methods. Object orientation allowed more fleliipiand
simplicity compared to class orientation. The |aagg type
system was developed. The language type systerndigl
simple types for evaluation of constraints and gajeare-
specific types (types for the turn-based strategyain). The
type system provided the necessary level of algira@and

key task in TBS game development [3]. In this papézs are
considered to be balanced if none of the competidgs
defined by the rules has an advantage; there arevirible
troops and the result of the game is independewhofmoved
first. In this paper rules balance is verified bgans of formal
properties monitoring [15].

Ill. THE PROTOTYPERULES DEVELOPMENTENVIRONMENT

The architecture of the designed rule development

allowed to separate the object specification frohe t environment is considered in this section. The isecture

implementation. Types are also used for model efetection.

The language is prototype-based [12]. The new &lonelements

object maintains the independent copy of propertiesthods
and the link to the initial (prototype) object. Axbject may
have only one prototype object. The modificatiorpaftotype
object doesn't influence the clone object and vieesa. The
main object modification method is property and et
update. The specified prototyping mechanism allowbjbct
elements reuse and seems to be the natural ob@atten
mechanism for the turn-based strategy games domain.
The language syntax was formally defined using ratecd-
free LL(1) grammar [13]. Both textual and graphinatations

for the language are available. We defined the &brm

denotational semantics [13] for the language, usimig —
calculus [12] for denotats and elements of HoagecIfl 3] for
precondition and postcondition behavior

consistency checking and correct method invocatianning
in game scenarios not for verification by deductanalysis.
Entities react to the behavior (i.e. method invimegtof other
entities by means of the special methods calledtoea

model is illustrated in Figure 2. The arrows corimgcmodel
represent dataflows. The rules developmen
environment consists of the graphical user interfatowing
visual game rules model creation, the rules vetiion tool,

the rules translator and the data (rules modedsage.

constraints
Conditions described in Hoare logic are used fordeho

Graphical User Interface language and visual modeling tool creation.

Rules Model Editor

i

IV. RELATED WORK

‘ Language Toolbox ‘ Property Editor There are several approaches reported in literatore
dealing with the game rules development automagiioblem.
y Moreno-Geret al. [5] consider adventure games creation for
Game Rules Model Verifier Rules Translator educational purposes. The textual adventure gameifiEp
language and the corresponding interpreter argette®ne
[Consistency Checker } will need to master the textual notation of theglasge to use
¥ the proposed environment. That might complicate amey
Balance Checker designer’s job. Rule verification is not considerddbreno-
> Analyzer Geret al. [6] extend the environment proposed in [5] by new
[Results Analyzer] reusable adventure.game-specific entities.
yzer Hu [7] also considers adventure games for educalite
‘ & proposed education model describes education réées
[Graphic Fight Presenter } teacher, a student, a course-book, etc.). The &dncaodel-
4@7 based TorqueEngine script extension is developéé. riles
are stored in several files using basic TorqueEngiinciples.
[Storage] Rule verification is not considered. The educati@venture

game development is significantly restricted by éaeication
model proposed.

The graphical user interface enables visual rukdaition Furtadoet al. [8] suggest an approach and a general
in the rules model editor. Rules are defined usieggraphical framework for game development. The informal visual

language notation. The example screenshot of theotgpe Medeling language is defined and the correspontti is
rules development environment is shown in Figure 3. created. The language is intended to describe gaies,
game graphics and sound. The language operatemtioas
of “game state”, “program”, “audio component”, etéwo
layers of abstraction are mixed in a single game&ehdthe
game components layer and the specific componejgciob
model layer). That may complicate game designets The
proposed framework supports the model inspectiorstates
reachability, states existence and constraints tends.
Balance checking is not supported.

Amory [9] deals with educational quest and adventur
games development automation. The approach incltues
development of interface library encapsulating empis from
the corresponding game genre domains. An educhtijprest
or an adventure game could be created implemertieg
interfaces of this library. Rules verification istrconsidered.
Fig. 3. The rules development environment and xaen@le rule model. Thus, the key advantages of our approach is seqaiat

the rules and the graphics definitions, the desige- rules

The toolboxes contain all necessary language graphiyerification possibility (including balance veriéiion) and

the property editor. The model description is slone the

textual language notation.

The verification tool checks for rules model caisncy V. CONCLUSIONS ANDFUTURE WORK
and balance using methods defined in the secti®n The
translator transforms the verified textual rulepresentation
into the C++ code. This programming language issared
to be the most popular for game development.

We developed the prototype rules developme
environment for turn-based strategy game rule dgwveént
support. The prototype was developed using Mictogisual
Studio 2008 SDK that enabled using managed codeapid

Fig. 2. The rules development environment architect

Ready

In the previous sections we presented a detailedrigition
of the new approach to game rule development adiomfor
the turn-based strategy game genre. The approakldés the
development of a visual formal rule descriptionglaage, a
r1J(t)rmal rule verification method and a rules devebept
environment supporting single formal rule model atien,
verification and rule-based executable prototypeeggation.
Following this approach we developed the neceskamal

basis and the prototype tool for game rules devetop. The [13] P. D. Mosses (2002). Fundamental Concepts and F&emaantics of

: _ i : Programming Languages — An Introductory Courselif@h Available:
prototype considers turn-based strategy game-specif hitp+//wiki.daimi au.dk/dSprogSem-01, 2002.

experience, allows rule balance verification, rapides [14] A. V. Gavrilov, E. A. Paviova, “Functional interfacanalysis for

prototype development and rule reuse. formalization of complex information system desigrinformation
The developed language simplifies rules developniEme Technologiesy#9, pp. 9-15, 2008. (in Russian).

N P g g . P P [15] V. V. Kulyamin, “Software verification methods,Russian State

application of domain-specific languages to TBSesul Analytical-Review Articles Contest for Priority Gmpt “Information-

definition is a new approach to TBS developmente Th Telecommunication Systen2908. (in Russian.).
application of formal verification at design-timtéosved error
detection prior to implementation.

The main advantages of the proposed approachsare a
follows: rules definition and game graphics defonit
separation, rules verification automation and TBénrg-
specific knowledge consideration.

Additional approach improvements include further
development of the balance verification method. &k going
to broaden the definition of balance and check tfa so-
called dynamic balance [3], i.e. the balance atyetten of the
game. So players could be guaranteed positive iexmer
throughout the game. We plan the extension of dnguage
type system and the object cloning mechanism @visi
Finally, it is planned to extend the approach te teal-time
strategy game genre which is very similar to the-hased
strategy genre. This will introduce a concept ofssidn
(missions do not exist in turn-based strategied)will lead to
complex time-constraints consideration. It is etpd that our
new results will facilitate the development of avelepment
environment for strategy games creation.

REFERENCES

[1] M. J. Taylor, M. Baskett, G. D. Hughes, S. J. Wétlsjng soft systems
methodology for computer game desigrSystems Research and
Behavioral Science#24., pp. 359-368, 2007.

[2] M. Brydon, A. Gemino, “Classification trees and idem-analytic
feedforward control: a case study from the videmgandustry,”Data
Mining and Knowledge Discoveryol. 17 , Issue 2, pp. 317-342, 2008

[3] A. Rollings, D. Morris,Game Architecture and Design. A New Edition
Indianapolis: New Riders Publishing, 2004.

[4] G. Wihlidal, Game Engine Toolset DevelopmerBoston, MA:
Thomson Course Technology PTR, 2006.

[5] P. Moreno-Ger, I. Martinez-Ortiz, J. L. Sierra, Bernandez-Manjon,
“Language-driven development of videogames: the Gaee>
experience,” Entertainment Computing - ICEC 200@p. 153-164,
2006.

[6] P. Moreno-Ger, J. L Sierra., I. Martinez-Ortiz,/Rrnandez-Manjon, “A
documental approach to adventure game developm&uignce of
Computer Programmingrol. 67 , Issue 1, pp. 3-31, Jun. 2007.

[7] W. Hu, “A reusable eduventure game frameworkransactions on
Edutainment | pp. 74-85, 2008.

[8] A.W.B. Furtado, A. L. M. Santos, G. L. Ramalhé, ¢omputer games
software factory and edutainment platform for Mewft .NET,” IET
Software vol. 1, Issue 6, pp. 280 — 293, Dec. 2007.

[91 A. Amory, “Game object model version lI: a theocati framework for
educational game developmerEducational Technology Research and
Developmentvol. 55, Number 1, pp. 51 — 77, Feb. 2007.

[10] J. Greenfield, K. ShortSoftware Factories: Assembling Applications
with Patterns, Models, Frameworks, and To@B04.

[11] E. A. Pavlova, “Design of formal domain-specificn¢page for
computer game rules development for turn-baseteglyagame genre,”
Computer and Information Technology Repartéeb. 2009. (in
Russian).

[12] M. Abadi, L. Cardelli,A Theory of Objects,996.

