
Declarative Language for SAX Handler Definition

Alexey Vladykin
St. Petersburg State University of Information Technologies, Mechanics and Optics

vladykin@gmail.com

Abstract

In this paper a declarative language for SAX
handler definition is proposed. This language allows
to describe complex XML parsing algorithms in a
simple manner. An algorithm is introduced for
automatic transformation of such handler descriptions
into finite state machines, and then into source code.
This approach reduces the complexity of SAX handler
development by eliminating the greater part of error-
prone manual work.

1. Introduction

XML is widely used for a variety of purposes: from
storing program configuration to transmitting data
packets over the Internet. More and more applications
require XML support, and programmers often have to
develop code that extracts data from XML documents.

Some XML documents are very large: up to
hundreds of gigabytes. E. g. a complete Wikipedia
dump including all articles with their change history
takes 148 Gb (bzip2-compressed).

How can one parse such document and extract
some useful information from it? The only feasible
approach for documents like Wikipedia dump is
Simple API for XML (SAX) [3], because SAX parser
is very effective about computer resources and passes
XML content to the rest of application in small
portions. Other well-known approaches to XML
parsing like Document Object Model (DOM) [6] and
Java API for XML Binding (JAXB) [1] need to load
the whole document into RAM, which is unacceptable.

The major SAX drawback is complexity of crafting
SAX handlers manually. [4] This paper describes an
approach which significantly simplifies development
of SAX handlers. A declarative language for XML
handler definition is introduced. Handler definition in
this special language is automatically translated into
finite state machine, and then into source code in any
programming language.

2. Simple API for XML

SAX is a low-level XML parsing technique. SAX
parser sequentially reads input document and notifies
SAX handler about every start and end tag, as well as
about character data between tags.

SAX parser implementations exist for many
programming languages as part of standard library or
as a 3rd party library.

SAX handler must be written by hand for each
document type that needs to be processed. Crafting
SAX handlers may be very hard task in case of
complex document structure.

Handler class in Java extends class DefaultHandler
and typically overrides the following three methods
with hand-written code:

void startElement(String uri, String localName,
String qName, Attributes attrs)

void endElement(String uri, String localName,
String qName)

void characters(char[] ch, int start, int length)

Handler calls startElement method when it
encounters start tag, endElement is called for end tag,
and characters – for character data between tags. [2]

For other languages SAX handler structure is
essentially the same.

3. SAX Handler as an Entity with Complex
Behavior

It is important to understand the reasons why
writing SAX handlers is so complex, and to eliminate
those reasons. This task can be accomplished with
automata based approach. [7]

SAX handler receives notifications from SAX
parser and translates those notifications into
commands or data structures that can be understood by
the rest of the application. It has to track current parser
position within the document and, according to that
position, handle notifications differently.

SAX handler is an entity with complex behavior
[7], because its reaction to incoming notifications
depends on previously received notifications. Handler
can be logically divided in two parts:

a) controlling part, which tracks current parser
position in XML document by remembering the
history of incoming notifications, and chooses one of
the possible commands for controlled part;

b) controlled part, which receives commands from
controlling part and translates them into commands or
data structures for the rest of the application.

The biggest challenge usually is controlling
(behavioral) part, because tracking of current parser
position in XML document within traditional approach
requires setting and checking many boolean flags, or
other tricks. Controlled part is typically simple, but its
code is spread and lost inside controlling part.

According to the paradigm of automata based
programming, an entity with complex behavior should
be represented as an automated object. Explicit
separation of controlling and controlled parts of SAX
handler can help crafting such handlers and make their
structure and behavior much clearer. Moreover, it is
possible to generate the code of controlling part based
on a declarative definition. The next section describes
a language that can be used for declarative definition
of SAX handlers.

4. Declarative Language for SAX Handler

We'll demonstrate the language and its usage on a
simple problem of extracting a list of departments and
all non-terminated employees from an XML document
describing company structure.

Such document could look like this:

<company>
<name>Mr. X and Partners</name>
<department>
 <name>Human Resources</name>
 <employee>
 <name>John Smith</name>
 </employee>
 <!-- more employees -->
</department>
<department>
 <name>Engineering</name>
 <employee terminated=”true”>
 <name>Zzyzzy Zzyrryxxy</name>
 </employee>
 <!-- more employees -->
</department>
<!-- more departments -->
</company>

Document structure shown here is relatively simple,
but it exposes a typical problem of distinguishing
between name of a company, name of department and
name of employee.

Another typical problem here is that extracting
John Smith from fragment <name>John
Smith</name> requires adding some lines of code to
all three of SAX handler methods: startElement,
endElement and characters. Thus a logically atomic
extraction of employee name is split into several
stages.

Both mentioned problems are related to the
controlling part of SAX handler and imply saving
handler state between invocations of its methods. This
is what makes writing SAX handlers complicated.

Let's see how these problems can be solved when
SAX handler is described using the proposed
declarative language. Handler definition in the
proposed language looks like:

(
<department>
 <name> { capture(); }
 </name> { obj.addDepartment(captured()); }
 (
 <employee terminated!=”true”>
 <name> { capture(); }
 </name> { obj.addEmployee(captured()); }
 </employee>
)*
</department>
)*

This definition consists of the following elements:
a) start and end tags. Start tag may have constraints

on its attributes (e.g. terminated!=”true”). Arbitrary
code may be specified after tag in braces. It will be
executed when such tag is encountered in document.

b) parentheses, used to group tags and specify zero-
or-one (?) and zero-or-more (*) quantifiers, or
enumerate alternatives separated by |.

Here is the formal grammar for this language:

S :: START_TAG | END_TAG | GROUP
START_TAG :: "<" ID OR_EXPR? ">" ACTION?
END_TAG :: "</" ID ">" ACTION?
GROUP :: "(" (START_TAG | END_TAG
 | GROUP)* ("*" | "?")? ")"
ACTION :: "{" CODE "}"
OR_EXPR :: AND_EXPR ("||" AND_EXPR)*
AND_EXPR :: TERM ("&&" TERM)*
TERM :: ID "==" STRING | ID "!=" STRING
 | ID "=~" STRING | ID "!~" STRING
 | "(" OR_EXPR ")"

In this grammar ID is any valid tag or attribute
name; STRING is arbitrary text enclosed in quotation

marks or keyword null; CODE is arbitrary code in
target programming language.

According to the paradigm of automata based
programming our SAX handler will consist of two
parts: controlling part (automaton) and controlled part.
Declarative definition of controlling part is shown
above.

Controlled part provides some interface to
controlling part. In our case this interface consists of
two methods: void addDepartment(String name) and
void addEmployee(String name). Implementation of
these methods and the whole controlled part class is up
to the developer.

Controlling automaton calls methods of controlled
object according to the declarative definition shown
above. Additionally it can use two utility methods
provided by controlling automaton: void capture() and
String captured(). The former tells automaton to
capture character data coming from parser into
temporary buffer. The latter returns character data
captured since last call to capture and clears the buffer.

5. Building Automaton for SAX Handler

To build controlling automaton from its declarative
definition we need to extract its states and build
transitions between states.

Both tasks are rather simple, because states and
transitions are implicitly present in the declarative
definition. Informally speaking, each place between
tags corresponds to one state, and tags correspond to
transitions.

There are some corner cases related to parentheses
and quantifiers, but overall algorithm is pretty
straightforward. Its implementation in Java can be
found at project website [5].

6. Code generation

Given the description of SAX handler controlling
automaton as a set of states and transitions, it is
possible to automatically generate source code in
virtually any programming language. Currently
implemented is code generation for Java. [5]

Code generator creates a class that extends
DefaultHandler and overrides aforementioned
methods startElement, endElement and characters. All
transitions on start tags are placed in startElement, and
all transitions on end tags – in endElement.

Automaton has only two member variables: current
state (integer) and temporary buffer for character data.
Thus memory consumption is minimal.

Every call to automaton's startElement, endElement
or characters is a quick constant time operation (not
taking into account what happens in invoked methods
of controlled object), so parsing XML document with
automated SAX handler remains an efficient linear
algorithm.

7. Conclusion

In this paper a declarative language for SAX
handler definition is introduced, and an automatic code
generation system is described. The system takes
declarative definition of SAX handler as input, builds
controlling automaton and then translates it into source
code in some programming language. Currently code
generation is implemented for Java programming
language. Implementation of the remaining part of
SAX handler – controlled object – is to be written
manually by the programmer, but this part is typically
trivial. Proposed approach features significant
simplification of SAX handler creation, and does not
bring any performance penalty.

This approach has been used in development of an
application that extracted contents of several kinds of
complex table-like structures from thousands of XML
documents.

8. References

[1] JAXB Reference Implementation.
https://jaxb.dev.java.net/

[2] McLaughlin B. Java and XML, Second Edition. O'Reilly,
2001.

[3] Official website for SAX. http://www.saxproject.org/

[4] Oleg Kiselyov. “A better XML parser through functional
programming”. LCNS, Springer-Verlag, 2002, pp. 209-224.

[5] SaxGen – Google Code.
http://code.google.com/p/saxgen/

[6] W3C Document Object Model. http://www.w3.org/DOM/

[7] Поликарпова Н. И., Шалыто А. А. Автоматное
программирование, Питер, СПб., 2009.

https://jaxb.dev.java.net/
http://code.google.com/p/saxgen/
http://code.google.com/p/saxgen/
http://www.saxproject.org/

	1. Introduction
	2. Simple API for XML
	3. SAX Handler as an Entity with Complex Behavior
	4. Declarative Language for SAX Handler
	5. Building Automaton for SAX Handler
	6. Code generation
	7. Conclusion
	8. References

