
Automata-based Programming in Visual Studio 2005:

State Machine Designer Tool

Evgeny O. Reshetnikov

Saint-Petersburg University of Informational Technologies, Mechanics and Optics

ereshetnikov@ rambler.ru

Abstract

This article introduces State Machine Designer tool

for automata-based programming in Visual Studio

2005. State Machine Designer extends functionality of

Visual Studio 2005 and gives developer more abilities

for designing and realization of software products.

This tool allows developer to create UML-like visual

models of project, add automata behavior to any class

in the project, and generate a part of source code on

C# programming language.

1. Introduction

Currently it becomes obvious that there is no common

way in developing of software products because of

many different programming standards and techniques.

Programming requires more and more specifications to

make this process clear. Specification is a good

practice but it is not enough because it does not reflect

the code which developer will produce. Usage of visual

models is a good way to bring source code concepts

and specifications together. Modelling allows

developer to see main structure of a project and main

interactions between its components. The last problem

is to make models and source code being related.

UML-diagrams [1] may describe both of system

behavior and project structure simultaneously. State

Machine Designer allows usage of three UML-

diagrams during project developing. Those are Classes

Diagram, Objects Diagram and State Machine

Diagram. By using these three models a part of source

code could be generated automatically.

The following UML-diagrams are used in State

Machine Designer:

Classes Diagram – describes classes, interfaces and its

relations.

State Machine Diagram – describes behavior of the

entity whose lifecycle could be represented as a state

machine. This state machine consists of finite count of

states and transitions between them. States represent

some stable states of the system and transitions occur

on the specified system events and if corresponding

guard conditions are satisfied [2].

Objects Diagram – reflects instances of classes with

initial values of its properties and aggregation

relationships between these instances.

2. Automata-based programming

Automata-based programming is a programming

technology where finite state machines are used for

representing the whole program or some of its parts.

Finite state machines could be implemented using

different methods such as state design pattern [3] or

SWITCH-Technology [4] or any other well-known

method. But the main idea remains the same: introduce

finite number of states, provide transitions between

these states on some system events and make specified

actions on states entering, leaving and transitioning

between them.

Automata-based programming is helpful in

development of compilers, automation solutions and

every application whose logic could be represented as

finite state machines.

3. Implementation

State Machine Designer tool developed as a plug-in for

Visual Studio 2005 [5] and based on Domain-Specific

Language Tools [6] which is a part of Microsoft Visual

Studio 2005 SDK.

Domain-Specific Language Tools are used for creation

of custom visual editors. These editors serve for editing

each of the three following models: Classes Diagram,

State Machine Diagram and Objects Diagram.

Obtained diagrams represent a part of a project. Source

code for this part is generated automatically on C#

programming language [7].

3.1. Classes Diagram

Classes Diagram is intended for visual creation of

classes, interfaces of the project and setting of its

relationships. IDE Visual Studio 2005 has its own

classes diagram which also allows creating classes,

interfaces and so on. It has some disadvantages though:

it is not always synchronized with a source code. For

example, if we create any class on standard class

diagram and then delete this diagram created class will

stay in the project. And wise versa if we create a class

independently of the diagram this class will appear on

the diagram only after diagram‟s regeneration and

saving. It is unacceptable to have a source code and

diagrams which are different. Diagram and source code

should always be synchronized to prevent misleading

situations.

Classes Diagram introduced in this paper is completely

synchronized with the code it reflects. This diagram

also has possibilities for adding of automata behaviour

for the classes on it. On adding automata behaviour

from Classes Diagram to some class automatic

transition to the State Machine Diagram is performed.

Classes Diagram also has validation mechanism which

prevents creation of wrong constructions in meaning of

C# language concepts.

3.2. State Machine Diagram

State Machine Diagram is intended for creation of

visual models for the objects which lifecycle could be

represented by finite count of states with guarded

transitions between them.

State Machine Diagram has validation mechanism

which allows guaranteeing the following rules:

1. State machine has only one initial state.

2. State machine has at least one final state.

3. Every transition has specified event on which this

transition is performed.

4. Every state should be reachable from the initial

state.

5. Transitions with the same event and same source

state should have orthogonal guard conditions.

The fifth rule is very hard and has no accurate solution

in this work.

3.3. Objects Diagram

Object Diagram is intended for visual creation of

starting configuration of the application. For each

object on the diagram instance of specified type is

created and developer are able to set initial values of

properties for each object, set relationships between

different objects. And if there is object with automata

behaviour on the diagram, developer can mark

corresponding state machine as a start point of the

whole application.

3.4. Code generation text templates

Code generation for specified model is possible with

DSL Tools. Code generation is performed using text

template transformation. Text templates are different

for each of the three diagrams. On every model change

new source code is generated. Thanks to this approach

source code always completely represent visual model

for any of the three diagrams.

Developer should never modify auto generated source

code because it will be overwritten on the next saving

or compilation of the project.

4. Usage

State Machine Designer could be used during

development of a new project in Visual Studio 2005

and during adding of new functionality to existing

project as well. Usage of State Machine Designer is

useful in almost all cases when developer wants to add

some automata behavior to a project.

When State Machine Designer plug-in is installed

developer can add new entities in his project and edit

diagrams using implemented editors. There are three

items which are corresponding to diagrams:

ClassesLanguage, StateMachineLanguage and

ObjectsLanguage. Files with those extensions

automatically use custom editors which are described

below.

4.1. Classes Diagram editor

For editing of Classes Diagram developer adds new

item to the project with special extension

ClassesLanguage. When developer double-clicks on

such an item special editor is appeared in new

document window (Figure 1).

Figure 1. Classes Diagram editing in Visual

Studio 2005.

Digits on the picture specify the main windows of IDE

during classes editing:

1. Solution Explorer – tree list of modules and files

in the project. Using “Add New Item …” command

developer can add new files to the project as well

as files with ClassesLanguage,

StateMachineLanguage and ObjectsLanguage

extensions which represent supported by tool

diagrams.

2. Classes Diagram editor area. Developer is able to

add classes and interfaces to this area using

extended toolbox.

3. Toolbox which contains items for adding classes,

interfaces and inheritance relationships to Classes

Diagram.

4. Property window for the diagram„s active object.

Using this diagram adding of automata behaviour to

any class is possible. After right click on any class

figure on the diagram context menu is shown (Figure

2). Developer can choose “Add/Edit automat

behaviour” item and active window will be

automatically switched to the State Machine Diagram

for the chosen class. If there is no such a diagram it will

be automatically created.

Figure 2. Context menu for the class on

Classes Diagram.

All classes which have its own state machine are drawn

with “A” icon in the top-left corner (Figure 3).

Figure 3. Class with automata behaviour.

Implementation for all methods for all classes from the

diagram could be done using additional code editor

which is shown after double click on any method

(Figure 4).

Figure 4. Additional source code editor.

Classes Diagram supports model validation. For

example, it doesn‟t allow inheritance of interface from

the class or class from two or more classes because

such constructions are wrong in .NET languages. If

some of the restrictions are not satisfied message with

corresponding error is shown in error window.

4.2. State Machine Diagram editor

For editing of State Machine Diagram developer adds

new item to the project with special extension

StateMachineLanguage. Such items also have their

own editor (Figure 5). StateMachineLanguage item

could be created automatically when developer adds

automata behavior to some class on the classes

diagram.

Figure 5. State Machine Diagram editing in

Visual Studio 2005.

Digits on the picture mean the same areas as on Figure

1. Toolbox for state machine editor contains “Initial

state”, “State”, “Final state” and “Transition” items.

Using this items developer visually creates state

machine. State Machine Diagram also supports

validation. The following rules are always satisfied:

there is only one initial state, there are no unreachable

states and so on.

4.3. Objects Diagram editor

For editing of Objects Diagram developer adds new

item to the project with special extension

ObjectsLanguage (Figure 6).

Figure 6. Objects Diagram editing in Visual

Studio 2005.

This diagram is useful when application has fixed count

of different objects. In this case objects configuration

could be represented on the diagram. And those objects

which have automata behaviour will be having “A”

icon in the top-left corner of the shape (Figure 7).

Figure 7. Object with automata behaviour.

On Objects Diagram developer could assign some of

state machines to start when the whole application is

started.

5. Conclusions

 This paper describes a tool for Microsoft Visual Studio

2005 which allows developer to model and develop

application using three diagrams: Classes Diagram,

State Machine Diagram and Objects Diagram. This

tool extends abilities of Microsoft Visual Studio 2005

in applications designing and development. With this

approach a part of the source code is generated

automatically that follows to decreasing of errors

count. Thanks to visual models application becomes

more clear and logical.

Developed tool could be used in development of any

application but it is most helpful in cases of reactive

systems [8]. Usage of the tool in development helps

programmer to see static and dynamic models of the

application simultaneously that also makes

development process easier.

Currently there is no similar tool for Visual Studio

2005 which will help developer to combine traditional

programming techniques with automata-based

programming.

6. References

[1] Dan Pilone, Neil Pitman, UML 2.0 in a Nutshell,

O‟Reilly, 2005.

[2] Tukkel N.I., Shalyto A.A., “State-based

programming”, PC World, 2001, #8, pp.116-121; #9,

pp.132-138.

[3] Gamma E., Helm R., Johnson R., Vlissides J.,

Design Patterns, MA: Addison-Wesley Proffesional,

2001, p.395.

[4] Shalyto A.A., “SWITCH-Technology.

Algorithmization and Programming of Logic Control

Problems”, St. Petersburg: Nauka, 1998.

 [5] Microsoft Corporation, Microsoft Visual Studio

2005, http://msdn.microsoft.com/vstudio/.

 [6] Microsoft Visual Studio Developer Center,

Domain-Specific Language Tools,

http://msdn.microsoft.com/vstudio/DSLTools/.

[7] Jesse Liberty, Brian MacDonald, Learning C#

2005, O‟Reilly, 2006.

 [8] Harel D. et al. “Statemate: A working environment

for the development of complex reactive systems”,

IEEE Software Eng., 1990, #4.

http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/DSLTools/

