
Application of UniTESK Technology for Functional Testing of Infrastructural
Grid Software

Sergey Smolov

ISP RAS

ssedai@ispras.ru

Abstract
In this article some questions of testing of

infrastructural Grid software on the standard

compliance are discussed. Nowadays Grid-systems are

one of the first-priority areas in computer science. The

primary task is an effective usage of their advantages

that is inseparably connected with the problem of

software portability in Grid-systems. One of the

simplest solutions of such problem is a development of

standards on bundled software. Particularly, the

compliance to the standard occurs as one of basic

requirements to a system that is why its

accomplishment should be checked with a high

validity. In this letter the development of test patterns

for infrastructural Grid software by means of

UniTESK technology is considered. The result of

program packet Globus Toolkit 4.2 testing upon

compliance with WSRF 1.2 basic standard is given.

1. Introduction

The term “Grid” appeared at the beginning of 1990
th

in “The Grid: Blueprint for a new computing

infrastructure” [1] collection under the editorship of Ian

Foster as a metaphor of such an ease of access to

computational resources as to power grid. According to

Ian Foster, Grid-system (hereinafter referred to as GS)

is a system, that:

a) coordinates the usage of resources in the absence

of a centralized management;

b) supports standard, open and universal protocols

and interfaces;

c) non-trivially supplies with a high-quality

services.

Following by this definition, GS is a universal

infrastructure of processing and storing distributed

data, and of different services, called Grid-services,

that are functioning in it. Different GS must support

standard protocols and interfaces, despite of possible

differences in architecture or specialties of realization.

The purpose of the Grid standardization is to guarantee

a portability of applications between different Grids,

including systems that are built upon different

infrastructural program packages.

1.1 Grid standardization

Realizations of GS had been appearing since 1995,

when infrastructural program package Globus Toolkit

appeared; nowadays it is de facto a standard of GS. It

was made by Globus Alliance – the major international

consortium in the area of Grid. By 1997 a European

project of creating a program package for GS had

begun, and it has brought to the infrastructural

UNICORE software. By 2004 under the aegis of

EGEE (Enabling Grids for E-sciencE) project, the

gLite package had been released. In the connection

with the great number of incompatible realizations of

infrastructural Grid software, the necessity of

unification and standardization became actual and

active work on Grid standards creation started. Three

groups of standards of the infrastructural Grid software

are existing nowadays: the WSRF (Web Services

Resource Framework), the OGSA (Open Grid Services

Architecture) and the WS-Management.

1.2 Questions of Grid realizations testing

One of the specialties of the application domain is

an existing of the incompatible, generally speaking,

standards and some independent realizations. It is

clear, that testing of the realization upon the standard

compliance is a very actual problem.

It is worth to notice, that in the application domain

the specificity of interaction between user applications

and GS means occurs – in this case they are Grid- and

Web-services and remote procedure calls.

The most widespread approaches to the GS testing

are:

a) unit testing – a testing of different software

modules. Particularly, Globus Toolkit developers use

JUnit for their realization checking.

b) integration testing – a testing of applications

execution upon the infrastructural Grid software

assembly. Typical examples of integration test

scenarios are data bulk transfers and routine

calculation implementations.

Both approaches are turned to realization errors

detection. But they have a considerable defect in the

context of compliance testing: there is no connection

between tests and standards requirements. That is, it is

impossible to draw a conclusion about compliance or

mismatching to the standard by test results.

1.3 Technology UniTESK of the automated

testing

Since 1994 the UniTESK technology of the

automated testing has been developed. It was

successfully used for testing of the different classes of

program systems – program interfaces,

telecommunication protocols and hardware. An access

to the infrastructural Grid software is realized by

different mechanisms of remote procedure calls and

official protocols that are very close to the domain of

applicability of the UniTESK, that’s why this

technology was chosen as a technology platform for

tests development.

The test development with the application of the

UniTESK technology accomplishes in the next seven

stages:

1) requirement analysis and its formalization,

formal specifications building;

2) requirements to the quality of testing

formulation;

3) test scenarios, that are realizing such coverage,

development;

4) test scenarios binding to the concrete target

system by mediator development;

5) tests translation and compilation;

6) tests debugging and execution;

7) testing results analysis.

The important advantage of the UniTESK

technology is an estimation of quality of testing

possibility by calculating the requirements coverage.

That is also the essential distinction from

overwhelming majority of test patterns for GS. The

calculation of requirements coverage and the

constructing of oracles (special components that are

checking the compliance of the target system to the

specification) are automated.

Thus, the UniTESK technology allows driving

widespread testing of a big class of program systems

and, particularly, to develop test patterns for

compliance problem solution.

1.4 OGSA and WSRF standards.

Applicable domain of problem

restriction.

The OGSA standard describes infrastructural

middleware OGSI (Open Grid Services Infrastructure)

between user applications and computational

resources. It means that applications have no any

possibility to interact with resources directly, but only

by using infrastructural software. At the root of OGSI

architecture the Grid-service concept lies that

represents a mechanism of remote calls and was

developed specially for Globus Toolkit 3.

At the same time with OGSA standard

development, in 2004 the OASIS consortium

suggested the WSRF standard. It also describes some

infrastructural software, but based on not Grid- but

Web-services. Correspondingly, the application

domain of this research is exactly infrastructural

software that is based on Web-services, because on this

concept the most widespread infrastructural Grid

software realizations are based.

In this research a possibility of UniTESK

technology application for the functional testing of

Grid software analyses, including the testing of

standard compliance. Particularly, the next problems

are considered:

1) representation of requirements to the services of

infrastructural Gird software in formal UniTESK

specifications;

2) development of mediators for impacts upon

infrastructural Grid software;

3) development of testing scenarios for infrastructural

Grid software.

2. Requirements to the realizations of

infrastructural Grid software

formalization

2.1 Regulating documents and requirements

to the realizations of infrastructural Grid

software

As it is mentioned above, there are two standards

that are used in GS development nowadays: OGSA and

WSRF. The OGSA standard is a description standard,

it does not contain any functional requirements,

existing requirements are uncertainly expressed,

descriptions of message formats and remote accessing

protocols are not given. Therefore, the OGSA standard

does not suit to be the base for the formal specification

and based on it test pattern development.

The WSRF standard for standard formalization

suites more. It contains 5 specifications:

1) WS-BaseFaults – determines format of error

messages and the mechanism of their processing;

2) WS-Resource – determines WS-Resource

concept itself, formats of messages and the semantics

of management services;

3) WS-ResourceLifetime – determines mechanisms

of destroying the WS-Resource;

4) WS-ResourceProperties – determines, in what

way a WS-Resource is connected with an interface,

that describes Web-service, and also represents the

mechanisms of getting, changing and deleting

properties of WS-Resource;

5) WS-ServiceGroup – determines an interface to

the set of heterogeneous Web-services.

The Resource is a logical entity that has the

following characteristics: identifiability, lifetime and

set of zero or more properties, which are expressible in

XML Infoset. The WS-Resource is a composition of

the Resource and the Web-service, by using its

methods or fields an access to the Resource is

accomplished. The WSRF standard is very convenient

to analyse because of its structuredness. For example,

the bigger part of functional requirements are supplied

with RFC 2119 keywords – MUST, SHOULD, MAY.

Moreover, most requirements are supplied with blocks

of descriptions and examples that have been written on

pseudocode that looks like WSDL 2.0 Web-services

description language.

Certain parts of standard have different levels of

obligatory in RFC 2119 gradation. That is, a WS-

Resource must realize requirements of WS-Resource

and WS-ResourceProperties specifications, also it

should realize requirements of WS-Base-Faults

specification and it may satisfy requirements of WS-

ResourceLifetime. Consequently, under the test pattern

development, the first two specifications should be

taken into account first of all. Such approach

considerably simplifies the test pattern structure and

reduces it, but retains tests correctness as solution of

the problem of compliance.

There are following message exchanges in WS-

ResourceProperties specification:

1) GetResourcePropertyDocument – getting all the

properties of the WS-Resource;

2) GetResourceProperty – getting the certain

property of the WS-Resource;

3) GetMultipleResourceProperties – getting

multiple properties of the WS-Resource;

4) QueryResourceProperties – determining the

structure of WS-Resource properties and querying the

requests upon them;

5) PutResourcePropertyDocument – changing of

the “old” Resource Property Document (a set of all

properties of the WS-Resource) by the “new” one;

6) SetResourceProperties – changing some

properties of the WS-Resource (i.e. a composition of

the three following message exchanges);

7) InsertResourceProperties – adding new

properties;

8) UpdateResourceProperties – changing values of

the existing properties of the WS-Resource;

9) DeleteResourceProperties – deleting some

properties of the WS-Resource.

In the course of the analysis of standard 325

functional requirements had been marked out, 29 – in

WS-BaseFaults specification, 12 – in WS-Resource, 51

– in WS-ResourceLifetime, 159 – in Ws-

ResourceProperties and 73 – in WS-ServiceGroup.

2.2 Formal specification development

Every message exchange in WSRF corresponds to

pair <request - response>, where in the capacity of the

response can be message with the returned value or

error message. Thereby WSRF message exchanges can

be modeled as function calls with the returned values,

error messages can be modeled as exceptions.

Due to in the concerned method of the

requirements to the infrastructural Grid software

formalization, the Web-service is modeled as an object

of some class, and message exchanges between client

and realization are represented as calls of this class

methods.

Altogether a half of all WSRF requirements was

formalized (nearly 160 requirements) and about 60%

requirements from WS-Resource, WS-

ResourceLifetime and WS-ResourceProperties

specifications. The whole set of requirements can be

separated into two basic groups: syntactical and

functional requirements. Syntactical requirements

impose constraints on a structure of messages and

relationships between the fields of one message.

Functional requirements correspond as restrictions

upon the functionality of requests processing and

connections between a content of request and a content

of response. It is recommended to check syntactical

requirements in mediators at the stage of message

parsing.

2.3 Mediator development

The main function of mediator, as a component of a

test pattern, is an establishment of correspondence

between a model object (object of specification class)

and a target system. In case of infrastructural Grid

software testing, there is no possibility to have an

access to fields and methods of system, that is why it

could be accomplished only by sending appropriate

requests and receiving and parsing responses. In

concerned method mediator transforms parameters of a

specification method into SOAP/HTTP message and

sends it to the target system on established TCP

connection. Received responses are checked by the

mediator, the correspondence to syntactical

requirements and parsed by mediator too. Then

mediator forms the returned value of the specification

function.

The peculiarity of the mediator development is that

existing realizations (particularly, Globus Toolkit 4.2)

do not satisfy to syntactical requirements of the

standard. For the testing implementation the adoption

of mediators by standard violations was needed. Also

by analyzing the source code of infrastructural Grid

software Globus Toolkit 4.2 and taking some

experiments with realization was established that

realization does not support the following message

exchanges – PutResourceProperties and

SetResourceProperties.

2.4 Test scenarios development

Under test scenario for testing of the infrastructural

Grid software of compliance to the WSRF standard

development, in the capacity of an automate state

identifier it is recommended to use the cardinality of

Resource Property Document of the WS-Resource, i.e.

an amount of WS-Resource properties. On the one

hand, such feature considerably reduces the complexity

of supposed state graph, and, appropriately, a time of

tests execution. On the other hand, under such

definition of state of the automate the determinacy of

graph retains that is important for a correct operation

of the UniTESK iterator.

Transitions between automate states are

accomplished by offering stimuli into the target

system. The role of stimuli in the case of development

of the test pattern for infrastructural Grid software play

mediator methods calls. As soon as synchronous model

of the target system is used, for every specification

method it is possible to create a separate scenario

method, which will go over the parameters of method

and will call (implicitly) mediator for testing impact

and an oracle for checking the returned value on

correctness.

3. Experience of practical testing of the

infrastructural Grid software

The method, which was represented above, was

used under development of the test pattern for

checking the compliance of the infrastructural Grid

software realizations to the WSRF standard.

3.1 Target system review

The object under testing in this research is a

program packet Globus Toolkit 4.2. Globus Toolkit 4.2

uses protocols of standard Web-services and

mechanisms of services description, detection, control,

authentication and authorization. This program packet

includes components that can be used for constructing

containers. In these containers Web-services, which are

written on Java, C and Python can be placed.

In accordance with Globus Alliance, the Java WS

Core component of Globus Toolkit 4.2 (it supports the

Web-services development and execution of Java

applications) realizes requirements of WSRF standard.

In this research the problem of compliance was

decided exactly for this component.

3.2 Implementation testing

Test scenarios that were developed by using

JavaTESK instrument include scenarios for eight

methods: GetResourcePropertyDocument,

GetResourceProperty, GetMultipleResourceProperties

Insert-, Update- and DeleteResourceProperties, and

also ImmediateDestroy and SheduledDestroy.

It is worth explain, why these eight message

exchanges (i.e. specification methods) were chosen. At

the time of test pattern development it was supposed,

that by test pattern using all services of the container of

the Java WS Core component will be tested. By

default, there is 34 Web-services in container, and only

23 of them support message exchanges, that are

mentioned above and are contained in WS-

ResourceProperties and WS-ResourceLifetime

specifications of WSRF standard. Correspondingly,

these 8 message exchanges is both simple enough to

specification methods development (the

QueryResourceProperties message exchange is not so

simple for testing) and allow to run testing of the

compliance to the WSRF 1.2 standard.

3.3 Testing results

In this research the realization of infrastructural

Grid software Globus Toolkit was tested by the

facilities of the UniTESK (JavaTESK) technology. In

the capacity of testing results reports about

requirements coverage, which were generated by the

instrument, acted. Nearly 60% of system functionality

was covered, wherein this test pattern does not yield to

tests that are used by Globus Toolkit developers. They

measures code coverage by tests for quality of testing

determination with the JUnit and Clover instruments.

These instruments allowed developers to determine

that their unit-tests had covered 60% of the

functionality of system too (i.e. Java WS Core

component). However, as it was mentioned above,

these tests cannot report about the compliance of

Realization Globus Toolkit 4.2 to the some standard.

Thus, existing and developed tests not only

complement each other, but allow considering the

realization from the different points of view.

Under the realization testing some semantic

discrepancies to the WSRF 1.2 standard (in

InsertResourceProperties and

UpdateResourceProperties message exchanges) were

revealed. Particularly, these methods allow to add and

change values of properties of the WS-Resource with

different identifiers (which are called QNames) that is

forbidden by the standard requirements.

4. Existing methods and approaching of

Grid infrastructural software testing

In 2006 ETSI (European Telecommunications

Standards Institute) organized an expert group for

development a test pattern for Grid compliance testing

[2]. Method that is being developed in ETSI is based

on the development on large amount of test cases on

TTCN-3 programming language. The prototype of

such test pattern on TTCN-3 language is represented in

[3]. Test pattern is not connected with any standard of

infrastructural Grid software. Instead of standard

requirements checking this test pattern checks

applicability of Grid in typical use cases – statement of

the computational task in query, task execution on one

of the computing nodes, result delivery.

In [4] authors propose an approach to the Grid

testing that is close to the approach presented in this

article. Authors offer to use a formalism of abstract

state machines (ASM) and automatically generate test

sequences from automate bypass. Questions of Grid

standards analysis and requirements formalization and

formal model building are not considering.

5. Conclusion

In this research the problem of testing of the

compliance of the infrastructural Grid software

realization Globus Toolkit 4.2 to the standard WSRF

1.2 was being solved. This standard was analyzed and

a catalogue of its requirements was created. Interfaces

and the structure of Java WS Core component of the

Globus Toolkit 4.2 were explored also. On basis of

these data the test pattern for this program packet was

developed by using UniTESK (JavaTESK) technology

and testing was carried out. The testing has showed

that the realization Globus Toolkit 4.2 complies with

the WSRF standard and has revealed a lack of some

unnecessary requirements accomplishment, both

functional and syntactical. Also testing has showed that

the UniTESK technology is applicable for testing the

infrastructural Grid software, particularly, there are the

following peculiarities of its application:

1) message exchanges with Web-services are

essentially modeled by specification functions;

2) for test pattern development a class library for

automatization of building different (and “incorrect”

also) messages of Web-services is necessary.

In the capacity of directions for the future research

we consider a development of test pattern, that is

checking a specific requirements to the services of the

infrastructural Grid software, like a service of bulk

data transferring, service of creation and management

of computational resources and so on.

6. References

[1] Ian Foster The Grid: Blueprint for a New Computing

Infrastructure. — Morgan Kaufmann Publishers. — ISBN

1-55860-475-8

[2] S. Schulze. Achieving Grid Interoperability: The ETSI

Approach. The 20th Open Grid Forum - OGF20/EGEE 2nd

User Forum. Manchester, UK. May 7 - 11, 2007

[3] T.Rings, H.Neukirchen, J.Grabowski. Testing Grid

ApplicationWorkflows Using TTCN-3. First International

Conference on Software Testing, Verification, and

Validation, ICST 2008, Lillehammer, Norway, April 9-11,

2008.

[4] Lamch, D.; Wyrzykowski, R. Specification, Analysis and

Testing of Grid Environments Using Abstract State

Machines. International Symposium on Parallel Computing

in Electrical Engineering, 2006. PAR ELEC 2006. 13-17

Sept. 2006 Pages:116 - 120

