

The subject of our work is an original interactive
telecommunication protocols design, simulation, and prototyping
tool set. The following subjects were investigated during the
research phase of the project:

- Efficient modeling of dynamic, unpredictable data structures,
- Reliable yet tunable code generation routines.
The idea of this presentation is to show modern efficient

methods of design of efficient complex software solutions.

API – Application programming interface,
ASN.1 – Abstract Syntax Notation 1,
CASE – Computer-Aided Software Engineering,
DTD – Document Type Definition,
GCC – GNU Compilers Collection,
GPL – General Public License,
GUI – Graphical User Interface,
IPC – InterProcess Communication
LGPL – Lesser General Public License,
MSC – Message Sequence Chart,
OS – Operating System,
RTOS – Real Time Operating System,
SDL – Specification and Description Language,
SDL-RT – Specification and Description Language for real

time applications,
XML – eXtensible Markup Language

I.INTRODUCTION

ur research and development of the software is
conducted as a part of an internal corporate project
aiming the rapid prototyping of custom

telecommunication solutions. This project has two extremely
important distinguishing factors:

O
• The systems under development are subject to

continuous changes,
• The reliability of the systems being developed is

much more important than their performance.
In order to cut the systems prototyping and development

costs, it was decided to employ CASE rapid prototyping tools.
The two aforementioned factors imposed certain restrictions
and requirements on the software development process, tools
and algorithms involved, thus stipulating the need of in-house
CASE software development. As an additional cost-cutting
measure, only open Linux-based tools and libraries were
employed during the development phase.

Manuscript received March 20, 2009.
R. M. Dmitrienko is an engineer of RSFLabs, Russia, N.Novgorod,

603104, Nartova, 6. phone: +7831-278-90-47 url: www.rsflabs.biz

II.PROJECT INTERNALS

The idea of the software, while quite complicated, is fairly
straightforward. From the user's point of view, the standard
workflow should include defining the system using SDL-RT
[1] language, eliminating possible errors, running source code
templates generation routine, as well as optionally simulating
the work of the protocol and tracing its input/output,
estimating the characteristics of the protocol, generating and
running test scenarios. When all of the required phases are
finished, the user should inspect and complete the generated
source code templates as needed, deploy the system, run
smoke tests etc. The former is achieved using the software we
are developing; the latter is done by the user.

The major problems we met were:
• Efficient, reliable modeling of dynamic, constantly

changing data structures during the system design
phase,

• Entirely customizable yet user-friendly and non-
obscure code generation.

A.Dynamic systems modeling
As already mentioned, the user should be able to define the

system using the SDL-RT language. This language is powerful
enough and one is able to describe procedures, processes,
blocks and systems using it. However, some of the parts of the
target system have to be implemented manually; this is why we
are talking about the “source code templates” generation, not
the source code per se. At the moment, our software provides
the user with the means of describing processes and
procedures. It is planned to expand it with the means of
process blocks, classes and systems definition.

In order to cut the development time and costs and to
improve the user experience, we have chosen the
wxShapeFramework [2] library as the diagram drawing
engine. It is an open source library intended to be used with
wxWidgets. While being simple enough to integrate with our
project, it is a powerful, flexible and easy to customize tool
that suits our needs perfectly. We have expanded it with our
custom set of primitives according to the SDL-RT standard.

While the user draws the diagram, a corresponding graph is
being built. This graph represents the structure of the diagram;
it is an internal wxShapeFramework data structure. It is used to
store the information about the diagram itself, i.e. the types of
elements and relations between them; it also allows for such
basic operations as file input/output, clipboard operations,
undo/redo framework. Hence, it is of little interest for us.

1

Roman M. Dmitrienko, RSFLabs

Telecommunication protocols development,
simulation and code generation tool

At the same time, a complex system logics data structure is
being built. It stores information about the system itself, as
defined by the SDL-RT diagram. This information includes the
definitions of the processes, procedures, variables, signals,
gates etc. Every process, procedure, system etc. is described
by the corresponding C++ class instance. Such classes store
information about local data definitions, as well as the graphs
that represent the algorithms being described. Every node of
the graph stores its parameters, i.e. those that are specified by
the SDL-RT standard.

While the system logics data structure is being built, it is
being analyzed in real time; the errors and warnings are being
reported to the user.

The diagrams are serialized in XML [3] files by the means
of wxShapeFramework. Those are enough to store all the data
needed to recreate the diagram, the locations and the
parameters of all of the elements and their relations.

In order to provide our software with basic means of
interoperability with existing and future third-party products,
we are also working on a textual SDL-RT exporting routine
according to the SDL-RT standard definition. Textual SDL-
RT representation is actually an XML representation; its DTD
can be found in the text of the SDL-RT standard.

B.Customizable source code generation
When the system is defined and all the possible errors that

prohibit code generation are eliminated, the user is able to
launch the target code template generation routine. While
designing this routine, we have faced several challenges; not
all of our solutions are considered final yet and hence the
information given here is a subject to change.

Our goal at this stage is to provide efficient, robust source
code templates generation routine. Our specific requirement is
that it should be flexible enough in order to both provide users
with advanced means of controlling the code generation
process and to allow for code generation for different target
platforms and architectures.

While designing the code generation functionality, we kept
in mind the fact that different real-time operating systems have
different APIs and possibilities. However, in order to provide
for implementation of the SDL-RT defined systems, a
predefined set of functions should be supported by the target
OS API. These functions include real-time process creation
and destruction, fast signal-based IPC mechanism (including,
at least, means of signal description, allocation, exchange and
destruction), timers and semaphores. The debugging output
functions are also needed. Most of the other actions described
by SDL-RT are simple components of algorithms (flow
control, loops, jumps etc) and thus are possible to implement
using basic C89 [4] instructions.

Hence, it was decided to design an intermediate pseudo-
language that should be able to describe both basic algorithms
and basic IPC and synchronization functionality (signals,
semaphores, timers). The textual SDL-RT representation is not
quite suitable due to its structure (XML data). This pseudo-
language source code is generated upon the user request when

the system definition is finished and all the possible errors are
eliminated.

This pseudo-language code may be stored in external files,
but is not intended for user manipulation. As soon as this
representation is built, the parser is run and the target C89
source code template is built.

In order to allow for source code generation for different
target platforms (that obviously have different APIs), different
rule sets should be applied to the generated source code. They
describe the means of working with signals, timers and
semaphores. Those rule sets are defined in external files and
are available for user inspection and manipulation in order to
provide further flexibility and extensibility of our software.

C.Optional functionality
Apart from the system definition and source code templates

generation, our software should also be able to implement
other functionality. In order to allow for such extensibility, we
have designed the plug-in architecture which is quite simple
itself. The plug-in modules receive the definition of the system
as generated on the step 1, perform their actions and report
results to the user.

We are considering implementation of following plug-in
modules: debugging, tracing, simulation, performance analysis
(including bottlenecks detection), fine-tuning.

The overview of the workflow is given at the figure 1.

Figure 1: Workflow overview

III.LANGUAGES AND NOTATIONS

There is a variety of protocol description's methods,
languages, and algorithms. Most of them are governed by such
well-known international organizations as ETSI, ITU, OMG,
ISO etc. In order to achieve our goals, we had to choose the
most appropriate, relevant, recognized ones.

We have chosen SDL-RT [1] as the core systems
description language. The traditionally employed language,
SDL [5], did not suit our exact needs due to the following

2

Visual
system

definition

Run-time error
detection

Extended
plug-in

functionality

Target C89
code generation

Logical definition

Intermediate
pseudo-
language

drawbacks:
• Out-of-date data types and data description tools.

ASN.1 [6] notation has a lot of advanced means of
data types definition, but it is not quite convenient for
definition of systems and for automated code
generation.

• Out-of-date syntax. Formalization is not enforced
enough (i.e. different standards descriptions that
make use of SDL often have different conventions).

• No semaphores. It is especially inconvenient during
real-time systems design.

• No pointers. Most of the embedded and real-time
systems are implemented in C, which depends heavily
on pointers.

SDL-RT is designed to eliminate the problems of classic
SDL. Some of the original SDL features were eliminated as
well, as they are almost never used in modern real-time
systems design.

We have also chosen MSC [7] as a message flow
visualization and debugging tool. It is also extended as a part
of SDL-RT project.

IV.TARGET PLATFORMS AND APIS

Actually, a target platform for the source code templates
generated by our software is any OS (or RTOS) that both has
C89-compliant compilers available and supports such common
features as message exchange, semaphores and timers. A lot of
different hardware platforms is currently supported by
GNU/GCC [8] compilers. One of the specific requirements of
our project is allowing users to tweak code generation rules, in
order to make it possible to deploy the generated software for
different target OS APIs. Our primary target API is ENEA
LINX [9] library, which is intended to be used with Linux.

V.OPERATING SYSTEM, TOOLS AND LIBRARIES

We have chosen Linux as a host operating system. It has
gained popularity during last few years and is widely
recognized not only as an OS for servers or software
developers, but also as a desktop OS. Being a free, open
source operating system, Linux is a great yet low-cost software
development environment. As a consequence, we have decided
to use GNU/GCC g++ compiler.

Another problem we have faced was choosing the right GUI
toolkit. The most popular ones are Qt [10], wxWidgets [11]
and GTK+ [12]. All of them provide developers with similar
possibilities, but we have chosen wxWidgets. It is free from
license limitations (Qt was not licensed under LGPL at the
time when the decision was made), it uses native GUI controls
under target operating systems whenever possible, its build
system is not as complicated as the one of Qt. wxWidgets also
provides developers with auxiliary non-GUI classes, thus
simplifying crossplatform development. Hence, our software
will be portable and most likely available for Windows users.

VI.CURRENT STATUS AND FUTURE PROSPECT

At the current phase, an alpha version of the software was
developed. It provides users with basic diagram drawing tools,
error reporting and code generation tools.

A lot of work is being done to improve the code generation
algorithms. We are planning to introduce new debugging
features, real-time protocol simulation, performance
estimations. We also plan to extend the list of supported target
platforms to include the most popular and widely employed
systems. Our long-term plans include implementing automated
testing and test scenarios generation and detailed automated
analysis of systems being designed. One of the possible long-
term development plans is improving the project even further
and releasing it as a commercial product.

VII.RÉSUMÉ

The proposed solution of the efficient dynamically changing
systems design problem consists of the following:

• Correct decomposition of the problem,
• Thorough planning of data structures,
• Thorough modeling of algorithms,
• Using customizable source code generation routines,
• Using open development tools, libraries and solutions

REFERENCES

[1] SDL-RT. http://www.sdl-rt.org
[2] wxShapeFramework library. http://wxcode.sourceforge.net/components/
shapeframework/
[3] XML. http://www.w3.org/XML/
[4] ANSI C. ANSI X3.159-1989 "Programming Language C."
[5] SDL. ITU-T Z.100
[6] ASN.1. ITU-T X.680
[7] MSC. ITU-T Z.120
[8] GNU/GCC. http://gcc.gnu.org/
[9] ENEA LINX. http://www.enea.com/Templates/Product____27016.aspx
[10] Qt. http://www.qtsoftware.com/
[11] wxWidgets. http://www.wxwidgets.org
[12] GTK+. http://www.gtk.org

3

	I. Introduction
	II. Project Internals
	A. Dynamic systems modeling
	B. Customizable source code generation
	C. Optional functionality

	III. Languages And Notations
	IV. Target Platforms And APIs
	V. Operating System, Tools And Libraries
	VI. Current Status And Future Prospect
	VII. Résumé

