Software package for optimizing digital
circuits®

Maxim Gromov,

Abstract—In this paper, we describe a software tool for
optimizing the path length from primary inputs to primary
outputs as well as the number of gates in digitalircuits. A frame
for optimization is extracted from a digital circuit; the extracted
frame is divided into two parts and the maximum flibility for
each part is determined by the largest solution tan appropriate
FSM equation. We check whether one or some outputifictions
of each part can be replaced by a simple functionfawo primary
input variables that can be implemented as a singlgate, while
preserving the behavior of the overall fragment. Adeveloped
software package can deal with digital circuits whih have
around 500 gates, and 40 primary inputs and outputs
Experiments were performed for a pack of benchmarksthat
were first resynthesised by ABC tool [1]. Our resuk show that
the developed package can improve around 15% of behmarks.

Index Terms—Digital circuit, FSM equation, optimization

I. INTRODUCTION

HE complexity of digital circuits increases quickand

there still are no tools which can guarantee tragteof
an optimal circuit. For this reason, usually optiation tools
run for already designed circuit. There are a numbk
optimization criteria such as reliability, faultésance,
minimal number of communication lines, delay, ae¢a The
problem of optimal design remains a challengingofam for
developing new information technologies. The bggiraach
for the optimization has been shown to be an iterat
component optimization that can be based on sohang
appropriate Finite State Machine (FSM) equationlafgest
solution, i.e. the solution with maximum flexibjlitcan be
viewed as a reservoir for all possible optimizatiaf a frame
of interest, from which an optimal frame implemeita can
be chosen. However, the complexity of solving anMFS
equation generally is exponential in the numbestafes of its
coefficients (FSMs). For this reason, a so-callemhdaw
approach for optimizing digital circuits is used rfo
optimization [2]. We iteratively extract a frame ain
appropriate size from a given digital circuit, digiit into two
parts and optimize these parts with respect to ghen
criteria. The procedure terminates when we arefgadi with

' This work is partly supported by RFBR grant N @812243 and by
RFBR-NSC grant N 06-08-89500.

Natalya Kushik

the optimization results.

In this paper, when optimizing a circuit, we extrac
combinational frame and then divide it into two qument
circuits (head and tail components) and optimizattbased
on the idea that in general, a number of combinatigircuits
can replace a head (or a tail) component withoanhging the
behavior of the overall frame. All permissible m@#ments
are represented as a nondeterministic circuitt&] is derived
as the largest solution to an appropriate FSM éguator
each primary output of a circuit component, we &hshether
the corresponding output function can be replaged simple
function of two input variables. In this case, thisction can
be implemented by a single gate. Correspondingiythie
frame, length of some paths from primary inputgptonary
outputs can be shortened as well as some gatdsecdeleted,
i.e., there is a chance that the number of gatdseiframe can
be reduced.

The structure of the paper is as follows. Sectlozohtains
preliminaries. Section Il is devoted to solving equation for
the head and the tail component. Section IV dississ
software for optimizing digital circuits. Section ¥escribes
experimental results while Section VI concludesphper.

Il. PRELIMINARIES

In this paper, we use behavioral function in order to
represent a digital circuit behavior. For a comboraal circuit
the behavioral function is defined over input and output
variables of the circuit and/(x, y) = 1 if and only if the circuit
produces the output vectgrto the input vectox. Consider
the combinational circuit in Figure 1.

Xy »- - Uy »- - y1

Xz - » Uy > IR 2

ol E . T, -

Xn B > Uy | » * Yim
==

Figure 1. The combinational composition of two uits

The circuit implements a system of Boolean funcidnan
SBF @) and can be described by a corresponding behaviora
functionWe(Xg, .-y Xny Y1, -+ Ym): Po(Xay -y Xy Y1, oovy Yi) =
1lifand only ifY; = ¢01(Xq, ooy Xo)y ves Y = O(Xg, --.0 Xp). We

say that a functioW is an SBF-behavioral function ¥ is a can be captured by a partial FSM that is definely éor u-
behavioral function of some system of Boolean, {pbgson- patterns which are output patterns of the head ooemt.

deterministic, functions. Given a Boolean functién we Thus, in order to get-inputs where the behavior of the tail
jomponent cannot be changed we take the projection

denote M%, the set of variable values, for which the functio) e ;
Yo LWo,).uy- This function is not really a behavioral

equals 1. Given Boolean functioAsand¥ such tha1M§ O) :] .)
function, since it describes only a part of behauiofor some

u-pattern there is ng-pattern in the se M,}, then the behavior
implements the SBR,; the behavioral functiol Wy, of the ot the tail component for this-pattern can be selected in an
head component is specified over the set {.., X,, U, ..., U} arbitrary way (so-called input don’t care condigpnSo we
of variables and we extend it over the set of \de®{y;, ..., consider Wy, CW,,).uy as a largest solution for the tail
Ym}. The tail component implements the SBP, and the ,nnonent and check whether there eyits = 1, ...,m, that
behavioral function¥ q, of the tail component is specified cgn pe replaced by a function of two input variabte by a
over the setdy, ..., Uy, i, ..., Ym} Of variables and we extend function equal to the constant 1 or constant 0.

it over the set of variablesx{ ..., x;}. The behavioral In our software we use Binary Decision Diagrams [BD
function W, of the overall circuit which implements the SBFI[5] for all operators over Boolean functions. We wperators

® = d,(dy) is specified over the sek ..., X, Vi, ..., ymp of Of the BDD package that is well known and is wideled
variables an®e = (Wo CWo.)ixy when manipulating with digital circuits.
1 2 /XY

M,},, we denote this fact a8 < W. The head component

In order to optimize the head or the tail componznthe
frame we should replace a circuit component withtlaer one IV. SOFTWARE
preserving the external behavior of the compositisihsuch
replacements are captured by a largest solutionato
corresponding FSM equation. According to optimizati
criteria, an optimal circuit can be then extradredn a largest
solution. In this paper, for each circuit componem¢ study
whether it is possible to replace a component \aitiother
circuit which has less number of gates or has shgraths
from primary inputs to primary outputs.

In this section, we briefly describe the softwamclkage
that is developed for optimizing digital, possildgquential
circuits. At the first step, a combinational framp to 100
gates and 20-23 inputs is extracted. At the seted this
frame iteratively is divided into two sequentiakisawhich are
optimized according to the above description andthié
optimization occurs a component is replaced by #ebe
implementation, the frame is divided again into tpanrts etc.
The procedure terminates when we run out of timearer

I1l. SOLVING AN EQUATION OVER THE HEAD COMPONENT AND satisfied with the optimization results.

THE TAIL COMPONENT A. Circuit representation

A. Solving an equation over the head component In our software package, we represent a sequerit@lit

The most flexibility for the head component carchptured 9iven in the bench format as a set of connectedsgaith

by the largest solution to a corresponding FSM &qgoa integer numbers. Each number uniquely identifiegade.
- Correspondingly, the information of all gate presksors (or
(Wo, OW)

ix,u WhereWs is extended over the sei{ ..., syccessors) is represented by a Boolean matrix. The
u} of variables and a digital circuit that implemerthe SBF optimization process relies only on integer arragh: the

®; can replace the head component if and onl¥, < Operations such as extracting a frame, optimizing a
component, composing two circuits after optimizati@sult

[4], where ¢ is the inversion of the function also take place in integer arrays. Only at the &ep this
representation is back converted into the benchrfamikat
(bench format). The use of such (hash) representati
accelerates the optimization process compared \iligh
representation where original strings of gate naaresused
without hashing.

When operating with behavioral functions BDDs afeao
big help. All the operations such as deriving thehdvioral
function for a circuit, given in the bench formegriving the
largest solution, checking whether one or sevenatput
finctions can be selected as constants (1 or (ckatg
whether an output function can be a simple functbriwo
input variables are performed fast enough for d@scwhich
B. Solving an equation over the tail component have up to 50 input and output variables. We uséOBU

The set of all permissible behaviors of the taimponent Package to calculate a largest solution as BDDtfer tail

(LPCDZ DLP(D)U(’U
¢

The above statement gives a guide how to determme
SBF that can replace SBP; without changing the behavior of
the overall system. We, thus, check whether onemore
functions of the head component can be selectddrations
of two input variables or as functions equal to tio@stant 1
(or to the constant 0) preserving all other funwdioln this
case, this output functions can be implemented kgngle
gate and all the gates of the path from inputs to
corresponding output which do not influence othetpat
functions, can be deleted from the head component.

component and transform it into a sum of produassin this VI. CONCLUSIONS

case, such repre_sentation seems to be more convehan In this paper, we described the software tool fatinizing
BDD representation. the number of gates in digital circuits as well the path
B. Main methods of the software package length from primary inputs to primary outputs. A
Frame extraction. When extracting a frame we need tOcombinational frame extracted from a digital citdeidivided
keep an eye on the correspondence between inpdisugputs ?nto two components. Ef%h component then is opéhiz
of the extracted frame and gates of the initiatwit We independently. We experimented on some b(_enchmadm f
extract a frame without combinational loops and fbis [6] and our results clearly show that there existuanber of
reason, we first order the combinational part o thitial benchmarks such as sB38.bench, s298.bench anded2l,

circuit by layers depending on their distance frprimary etc. for which our package returns optimized cicuMore

inputs and flip-flop outputs. If there are layers then we experiments with new benchmarks are needed in otaler

extract a frame as the set of all gates which lzetoriayersg,
i+l ... kl<j<sksn

Deriving a behavioral function for a non-determinigic
circuit that is the largest solution for the head omponent (1]
We use the BDD package in order to derive a behalio
function for each component. The largest solutibantis [2]
obtained by BDD manipulation. Using the BDD
representation of the largest solution each outpuction is
checked whether it can be replaced by a constariiyoa
simple function of two input variables preservihg behavior [3l
of the overall composition.

Deriving a behavioral function for a non-determinigic [4]
circuit that is the largest solution for the tail @mponent.

For the tail component BDD representation of thegdat
solution is converted into a sum of products, as this
representation seems to be more convenient foindeaith a [6]
system of partially specified Boolean functions.

Optimization. If one or several output functions of a head
(or tail) component can be replaced by a constaribyoa
simple function of two input variables then a cepending
gate is added to the component and all gates ofintial
component which do not influence other outputs tateen
away.

Insert operator is used for inserting the optimized
component into the frame and then for insertingdhtined
frame into the initial circuit.

V. EXPERIMENTAL RESULTS

We have conducted experiments using the propos#ubohe
with some benchmarks [6] in order to see how oftem
package can reduce the number of gates and théhlehg
path from primary inputs to primary outputs for &em
combinational circuit. We used ABC for logic synsleeand
verification. A given benchmark was first synthesizas a
logical circuit using ABC and our package was ufmdthe
circuit optimization. Extracted frames have up ® iBputs
and path length from primary inputs to primary augpvaries
from 5 to 19 being 10 on average. Ten functionstved
variables, such as AND, OR, etc., were used foinopation;
all of them can be easily implemented by a singleegThe
results show that the developed package can impaowend
15% of benchmarks. The optimization is not huge diuthe
other hand, those benchmarks were already optimizady
times using other packages.

estimate the efficiency of the developed package.

REFERENCES

Berkeley Logic Synthesis and Verification Group, @BA System for
Sequential Synthesis and Verification, http://wweeeberkeley.edu/
alanmi/abc/

S.Zharikova, M.Vetrova, N.Yevtushenko Optimizatiaf a multi
component digital circuit by solving a system ofMrSquations //
Proceedings Euromicro Symposium on Digital Systenesign
Architectures, Methods and Tools, IEEE ComputeriGypc— Belek-
Antalya, Turkey, 2003, pp. 62-68.

A. Mishchenko, R. Brayton, R. Jiang, T. Villa, ahd Yevtushenko,
"Efficient solution of language equations using tpianed
representations”, Proc. DATE, 2005, pp. 412-417.

N. Kushik, G. Sapunkov, S. Prokopenko, N. YevtugioeiMinimizing
path length in digital circuits based on equatiatviag. In Proc. of
IEEE EAST-WEST design&test symposium, October, 2008 365-
370.

CUDD [Electronic resource] —http://visi.coloradauéefabio/CUDD/
Education: Virginia Tech: The Bradley Department Eiectrical &
Computer Engineering / College of Engineering; ISS88 Sequential
Benchmark Circuits. — Access mode to an electrorésource.
http://www.ece.vt.edu/mhsiao/iscas89.html is free.

