
 1

Abstract—In this paper, we describe a software tool for

optimizing the path length from primary inputs to primary
outputs as well as the number of gates in digital circuits. A frame
for optimization is extracted from a digital circuit; the extracted
frame is divided into two parts and the maximum flexibility for
each part is determined by the largest solution to an appropriate
FSM equation. We check whether one or some output functions
of each part can be replaced by a simple function of two primary
input variables that can be implemented as a single gate, while
preserving the behavior of the overall fragment. A developed
software package can deal with digital circuits which have
around 500 gates, and 40 primary inputs and outputs.
Experiments were performed for a pack of benchmarks that
were first resynthesised by ABC tool [1]. Our results show that
the developed package can improve around 15% of benchmarks.

Index Terms—Digital circuit, FSM equation, optimization

I. INTRODUCTION

HE complexity of digital circuits increases quickly and
there still are no tools which can guarantee the design of

an optimal circuit. For this reason, usually optimization tools
run for already designed circuit. There are a number of
optimization criteria such as reliability, fault-tolerance,
minimal number of communication lines, delay, area etc. The
problem of optimal design remains a challenging problem for
developing new information technologies. The best approach
for the optimization has been shown to be an iterative
component optimization that can be based on solving an
appropriate Finite State Machine (FSM) equation. A largest
solution, i.e. the solution with maximum flexibility can be
viewed as a reservoir for all possible optimizations of a frame
of interest, from which an optimal frame implementation can
be chosen. However, the complexity of solving an FSM
equation generally is exponential in the number of states of its
coefficients (FSMs). For this reason, a so-called window
approach for optimizing digital circuits is used for
optimization [2]. We iteratively extract a frame of an
appropriate size from a given digital circuit, divide it into two
parts and optimize these parts with respect to the given
criteria. The procedure terminates when we are satisfied with

1 This work is partly supported by RFBR grant N 07-08-12243 and by

RFBR-NSC grant N 06-08-89500.

the optimization results.
In this paper, when optimizing a circuit, we extract a

combinational frame and then divide it into two component
circuits (head and tail components) and optimize them based
on the idea that in general, a number of combinational circuits
can replace a head (or a tail) component without changing the
behavior of the overall frame. All permissible replacements
are represented as a nondeterministic circuit [3] that is derived
as the largest solution to an appropriate FSM equation. For
each primary output of a circuit component, we check whether
the corresponding output function can be replaced by a simple
function of two input variables. In this case, this function can
be implemented by a single gate. Correspondingly, in the
frame, length of some paths from primary inputs to primary
outputs can be shortened as well as some gates can be deleted,
i.e., there is a chance that the number of gates in the frame can
be reduced.

The structure of the paper is as follows. Section II contains
preliminaries. Section III is devoted to solving an equation for
the head and the tail component. Section IV discusses
software for optimizing digital circuits. Section V describes
experimental results while Section VI concludes the paper.

II. PRELIMINARIES

In this paper, we use a behavioral function in order to
represent a digital circuit behavior. For a combinational circuit
the behavioral function Ψ is defined over input and output
variables of the circuit and Ψ(x, y) = 1 if and only if the circuit
produces the output vector y to the input vector x. Consider
the combinational circuit in Figure 1.

Figure 1. The combinational composition of two circuits
The circuit implements a system of Boolean functions Φ (an

SBF Φ) and can be described by a corresponding behavioral
function ΨΦ(x1, …, xn, y1, …, ym): ΨΦ(X1, …, Xn, Y1, …, Ym) =
1 if and only if Y1 = ϕ1(X1, …, Xn), …, Ym = ϕm(X1, …, Xn). We

Software package for optimizing digital
circuits1

Maxim Gromov, Natalya Kushik

T

 2

say that a function Ψ is an SBF-behavioral function if Ψ is a
behavioral function of some system of Boolean, possibly non-
deterministic, functions. Given a Boolean function θ, we

denote 1
θM the set of variable values, for which the function

equals 1. Given Boolean functions θ and Ψ such that 1
θM ⊆

1
ψM , we denote this fact as θ ≤ Ψ. The head component

implements the SBF Φ1; the behavioral function
1ΦΨ of the

head component is specified over the set {x1, …, xn, u1, …, uk}
of variables and we extend it over the set of variables {y1, …,
ym}. The tail component implements the SBF Φ2 and the
behavioral function

2ΦΨ of the tail component is specified

over the set {u1, …, uk, y1, …, ym} of variables and we extend
it over the set of variables {x1, …, xn}. The behavioral
function ΨΦ of the overall circuit which implements the SBF
Φ = Φ2(Φ1) is specified over the set {x1, …, xn, y1, …, ym} of
variables and ΨΦ = (

1ΦΨ ∧
2ΦΨ)↓x,y.

In order to optimize the head or the tail component of the
frame we should replace a circuit component with another one
preserving the external behavior of the composition. All such
replacements are captured by a largest solution to a
corresponding FSM equation. According to optimization
criteria, an optimal circuit can be then extracted from a largest
solution. In this paper, for each circuit component, we study
whether it is possible to replace a component with another
circuit which has less number of gates or has shorter paths
from primary inputs to primary outputs.

III. SOLVING AN EQUATION OVER THE HEAD COMPONENT AND

THE TAIL COMPONENT

A. Solving an equation over the head component

The most flexibility for the head component can be captured
by the largest solution to a corresponding FSM equation

ux ,)(
2 ↓ΦΦ Ψ∧Ψ , where ΨΦ is extended over the set {u1, …,

uk} of variables and a digital circuit that implements the SBF
Φ3 can replace the head component if and only if

3ΦΨ ≤

ux ,)(
2 ↓ΦΦ Ψ∧Ψ [4], where ϕ is the inversion of the function

ϕ.
The above statement gives a guide how to determine an

SBF that can replace SBF Φ1 without changing the behavior of
the overall system. We, thus, check whether one or more
functions of the head component can be selected as functions
of two input variables or as functions equal to the constant 1
(or to the constant 0) preserving all other functions. In this
case, this output functions can be implemented by a single
gate and all the gates of the path from inputs to a
corresponding output which do not influence other output
functions, can be deleted from the head component.

B. Solving an equation over the tail component

The set of all permissible behaviors of the tail component

can be captured by a partial FSM that is defined only for u-
patterns which are output patterns of the head component.
Thus, in order to get u-inputs where the behavior of the tail
component cannot be changed we take the projection
(

1ΦΨ ∧
2ΦΨ)↓u,y. This function is not really a behavioral

function, since it describes only a part of behavior. If for some

u-pattern there is no y-pattern in the set 1
ψM then the behavior

of the tail component for this u-pattern can be selected in an
arbitrary way (so-called input don’t care conditions). So we
consider (

1ΦΨ ∧
2ΦΨ)↓u,y as a largest solution for the tail

component and check whether there exits yi, i = 1, …, m, that
can be replaced by a function of two input variables or by a
function equal to the constant 1 or constant 0.

In our software we use Binary Decision Diagrams (BDD)
[5] for all operators over Boolean functions. We use operators
of the BDD package that is well known and is widely used
when manipulating with digital circuits.

IV. SOFTWARE

In this section, we briefly describe the software package
that is developed for optimizing digital, possibly sequential
circuits. At the first step, a combinational frame up to 100
gates and 20-23 inputs is extracted. At the second step this
frame iteratively is divided into two sequential parts which are
optimized according to the above description and if the
optimization occurs a component is replaced by a better
implementation, the frame is divided again into two parts etc.
The procedure terminates when we run out of time or are
satisfied with the optimization results.

A. Circuit representation

In our software package, we represent a sequential circuit
given in the bench format as a set of connected gates with
integer numbers. Each number uniquely identifies a gate.
Correspondingly, the information of all gate predecessors (or
successors) is represented by a Boolean matrix. The
optimization process relies only on integer arrays: all the
operations such as extracting a frame, optimizing a
component, composing two circuits after optimization result
also take place in integer arrays. Only at the last step this
representation is back converted into the benchmark format
(bench format). The use of such (hash) representation
accelerates the optimization process compared with the
representation where original strings of gate names are used
without hashing.

When operating with behavioral functions BDDs are of a
big help. All the operations such as deriving the behavioral
function for a circuit, given in the bench format, deriving the
largest solution, checking whether one or several output
functions can be selected as constants (1 or 0), checking
whether an output function can be a simple function of two
input variables are performed fast enough for circuits which
have up to 50 input and output variables. We use CUDD-
package to calculate a largest solution as BDD for the tail

 3

component and transform it into a sum of products, as in this
case, such representation seems to be more convenient than
BDD representation.

B. Main methods of the software package

Frame extraction. When extracting a frame we need to
keep an eye on the correspondence between inputs and outputs
of the extracted frame and gates of the initial circuit. We
extract a frame without combinational loops and for this
reason, we first order the combinational part of the initial
circuit by layers depending on their distance from primary
inputs and flip-flop outputs. If there are n layers then we
extract a frame as the set of all gates which belong to layers j,
j + 1, …, k, 1 ≤ j ≤ k ≤ n.

Deriving a behavioral function for a non-deterministic
circuit that is the largest solution for the head component.
We use the BDD package in order to derive a behavioral
function for each component. The largest solution then is
obtained by BDD manipulation. Using the BDD
representation of the largest solution each output function is
checked whether it can be replaced by a constant or by a
simple function of two input variables preserving the behavior
of the overall composition.

Deriving a behavioral function for a non-deterministic
circuit that is the largest solution for the tail component.
For the tail component BDD representation of the largest
solution is converted into a sum of products, as this
representation seems to be more convenient for dealing with a
system of partially specified Boolean functions.

Optimization . If one or several output functions of a head
(or tail) component can be replaced by a constant or by a
simple function of two input variables then a corresponding
gate is added to the component and all gates of the initial
component which do not influence other outputs are taken
away.

Insert operator is used for inserting the optimized
component into the frame and then for inserting the obtained
frame into the initial circuit.

V. EXPERIMENTAL RESULTS

We have conducted experiments using the proposed method
with some benchmarks [6] in order to see how often our
package can reduce the number of gates and the length of a
path from primary inputs to primary outputs for a given
combinational circuit. We used ABC for logic synthesis and
verification. A given benchmark was first synthesized as a
logical circuit using ABC and our package was used for the
circuit optimization. Extracted frames have up to 25 inputs
and path length from primary inputs to primary outputs varies
from 5 to 19 being 10 on average. Ten functions of two
variables, such as AND, OR, etc., were used for optimization;
all of them can be easily implemented by a single gate. The
results show that the developed package can improve around
15% of benchmarks. The optimization is not huge but on the
other hand, those benchmarks were already optimized many
times using other packages.

VI. CONCLUSIONS

In this paper, we described the software tool for optimizing
the number of gates in digital circuits as well as the path
length from primary inputs to primary outputs. A
combinational frame extracted from a digital circuit is divided
into two components. Each component then is optimized
independently. We experimented on some benchmarks from
[6] and our results clearly show that there exist a number of
benchmarks such as s838.bench, s298.bench and s420.bench,
etc. for which our package returns optimized circuits. More
experiments with new benchmarks are needed in order to
estimate the efficiency of the developed package.

REFERENCES
[1] Berkeley Logic Synthesis and Verification Group, ABC: A System for

Sequential Synthesis and Verification, http://www.eecs.berkeley.edu/
alanmi/abc/

[2] S.Zharikova, M.Vetrova, N.Yevtushenko Optimization of a multi
component digital circuit by solving a system of FSM equations //
Proceedings Euromicro Symposium on Digital System Design
Architectures, Methods and Tools, IEEE Computer Society. – Belek-
Antalya, Turkey, 2003, pp. 62-68.

[3] A. Mishchenko, R. Brayton, R. Jiang, T. Villa, and N. Yevtushenko,
"Efficient solution of language equations using partitioned
representations", Proc. DATE, 2005, pp. 412-417.

[4] N. Kushik, G. Sapunkov, S. Prokopenko, N. Yevtushenko. Minimizing
path length in digital circuits based on equation solving. In Proc. of
IEEE EAST-WEST design&test symposium, October, 2008, pp. 365-
370.

[5] CUDD [Electronic resource] –http://vlsi.colorado.edu/~fabio/CUDD/
[6] Education: Virginia Tech: The Bradley Department of Electrical &

Computer Engineering / College of Engineering; ISCAS89 Sequential
Benchmark Circuits. – Access mode to an electronic resource.
http://www.ece.vt.edu/mhsiao/iscas89.html is free.

