

1

Dynamic web-components and web environment behavior analysis

Suvorov V.1

1Saint- Petersburg State University, Math and Mechanics faculty

A problem of automated interaction with complicated website at a user level is considered. The general case of

playing online game is considered as a model of any site usage. Three functional components – the user actions, the site
logic and other parties’ actions are distinguished. A method of reconstructing site components, their behavior and
interconnectivity is suggested. Practical results of using the method are shown - playing online game and getting
components from broadcast site.

Index Terms— website automation, web-component analysis, website behavior analysis, website integration

I. PREFACE
Nowadays internet applications are widespread. It is

declared that the era of Web 2.0 technologies came up – that
means the idea of the proliferation of interconnectivity and
interactivity of web-delivered content [1]. Sites incorporate
new technologies of creating dynamic web pages and
complicated user interaction scenarios. There are various
technologies of creating dynamic content and it is not so easy
to unite them or use some part of one site in the other as it was
in pure HTML –era. As content is generated at the server
side, it is not enough to send URL as request and analyze the
reply of the server, as it is just a static stamp of some
particular case.

As Web becomes some media for applications, the problem
of non-transparency occurs. Yesterday one could just analyze
the source code of webpage and understand the behavior –
now it is pretty hard and non-trivial, some parts comes as
black –boxes (for example flash container)

There exist tools that help to understand site structure, for
example, Firebug for Mozilla but this tool does not allow
automating information retrieval. The search robots distinct
text and links and not components or behavior. There are
cases when automation of using site is needed

Use some component from third-party site in your own
Automate actions on third-party site (post blog, play online

game, etc.)
These tasks are usually solved locally that means writing a

specific script for specific task. An example is various
Greasemonkey scripts. In the paper a method of
reconstructing site components, their behavior and
interconnectivity is suggested so that then it will be possible to
provide a visual environment of creating automation scenarios
and solve the problem of components’ reuse. The general
case of playing online game is considered as a model of any
site usage. The model is robust as it has three components -
the user actions, the site logic, and other parties’ actions.

Some difficulties to be faced
The plain HTML pages dissolve in the sea of the dynamic

content namely PHP, ASP, Flash and others. The AJAX
technology is also frequently used. One can name lots of other
technologies used in creating web pages but the idea is that

client –server communication is not based solely on hyperlink
clicking but on different other scenarios. It results in a
dynamically updated webpage. Dynamic content is generated
either on a server side, e.g. PHP or on the client side e.g.
JavaScript. For the moment let us neglect the problem of
indexing such dynamic pages - that problem the Google
successfully solves, but let us face other problem of linking
different web applications. That seems easy if you want to just
take some part of the webpage and encapsulate it in your own.
Nevertheless, you can expect some difficulties with AJAX
components and find out that as you moved a component it
does not work properly for example the authorization
procedure is missing. You have to reverse the code, which is
trivial for static html and non-trivial for dynamic content and
restore the communication model of the component you use.

 Another difficulty exists if you want to automate
information retrieval from the dynamic webpage. You may
need to authorize or to navigate through some links, as the
static link not always exists. That difficulty is now faced by
search engines - the search robot indexes page but then the
user follows the link provided and finds out other content. The
solution used is to provide the webpage cached by search bot.
This is not the best solution as it makes a security hole as one
can have access the information on a particular webpage
without required authorization and may have some copy
legacy aspects. The search bot indexed the page under some
account and cached page. That unintentionally reveals the
content of authorized user to unauthorized user or user
blocked by IP-filter.

 As it seems trivial at the first sight to get some content
from a webpage for your own use - it is not, so if the webpage
is complex, dynamic, and recent technologies make it even
worse. Usually some scripts for particular web content and
particular site are written and locally solve the problem of
retrieving information.

 Not so long ago interactive web-applications were
developed. They require the user to stay online for a
significant time and provide dynamically changed online
content. The example is online games - numerous of them.
One of the most well known is Travian. It has more than
1000000 players worldwide and about one-third online at any
moment. Another example is stock applications and online

2

broadcasts. These services sometimes provide tools for
automation and sometimes not, for example, online broadcasts
are not recorded. If it is a big project, then adding some
feature by its developers can take a long time. In addition, for
any third party is it not easy due to the complexity of webpage
structure.

 It will be nice if we have a tool that can use for dealing
with complex dynamic content – so we can distinguish the
dynamic components, analyze them in a simple way and use
them for our own needs. For example, we would like to have a
bot that will play online game or record interesting broadcasts
(the criteria can be based on number of active viewers) or
automatically place bets on an auction when it is near the end.

II. A GAME AS A GENERAL MODEL FOR A SITE

Let us construct a natural model of a game. In general, we

can describe a strategy game as follows:
Each player initially has some number of resources R (let us

say an army is a resource) and buildings B which provide
resources in time.

A player can construct buildings by spending resources but
new buildings provide resources faster

Resources can be exchanged one for other. Resources can
be exchanged between players, so the war is considered as a
resource exchange

There exist a set of actions that user can perform, that affect
the system state

 A simple model we can use is a model with feedback
propagating in time

First, we need to specify control elements. For that purpose,
a simple strategy can be implemented. A sniffer, browser and
a program-controlled mouse is needed. Let us consider an
action. First, we stay calm and do nothing and record some
number of system states. We use screen version of browser to
determine if anything changed and detect the regions where
picture changed. That way we determine the “noise” generated
by counters, banners. Then we try to check points on screen
by moving mouse to the point and clicking. Not many points
must be checked as the design is user-friendly and controls
have reasonable dimensions. If the click was successful –that
means something changed on a screen except “noise” then we
try to specify the area that changed and sniff packets at the
same time. Absence of packets may tell us that the control is a
JavaScript and we should iterate through some more so we
click around the area that changed or try to input some text –
that way we determine the behavior of the control. Presence
and type of packets can also give us information about control
usage. Next, we have to try to map control into code. That can
be done by using Firebug script for Firefox.

 Figure 1. A simple model of the game

E indicates interaction with other players’ actions. As we

defined that interaction involves only resource exchange so
we can say that given R(t) and R’(t) at the time t and applying
E we get some resource flow ΔR(t+Δt)=E(R(t),R’(t)) and
ΔR’(t+Δt) =E(R(t),R’(t)) respectfully. In fact we can consider
the Nash equilibrium to be reached –so E is predictable and
there exist a number of strategies that maximize the gain

function. That means the function A(R,E,G) is defined for a
chosen strategy G. F is a function that determines resource
growth and can be derived from game rules with respect to R
and B. As E can be determined either in a solid or in a
probabilistic form then F can be determined as well.

 That model can be spread on other applications for
example in recording online broadcasts the resources will be
the number of peers watching, the time of broadcast, disk
space.

For example, we would like to watch the most interesting
moments – then we should record only most viewed
broadcast. (Suppose we record from screen and have a limit of
one broadcast a moment)

 Why should we use this model? The reason is that we
want to deal with dynamic content in a nice way - have nearly
all useful properties of the component accessible and automate
our actions also in a nice way – just specify rules of the game
or even automate learning the rules.

Analyzing communication protocol and modeling
communication is considered in [2, 3]. There a finite state
machine model is proposed to analyze the behavior and it
works well if number of states is finite. In general we can
consider states finite but there is a problem of describing such
states as initially we do not know the component’s algorithm
and our goal is not model checking but finding out some
relations between actions and resources in time.

So we want an analyzer, which on the input get some URL
and maybe some rules (function G(R)) and on the output
provide us with analyzed dynamic components and maybe
some further rules of intercommunication (F, E)

III. COMPONENT ANALYSIS

Then we should determine the static and dynamic
components that are not controls and distinguish parts of the

R, E

A

The Game
Resources

R(t+1)=F(R(t),B,E)
Visible external

influence
E(R,R’)

Decision block
Compute the gain and
max it G(R)

3

webpage that change by applying a simple differential
scheme. That can be done using any client-imitating
environment. The environment must fully support HTTP
protocol and be able to track AJAX and JavaScript. The
easiest way is to implement a sniffer for packets tracking and
use custom scripts to control the Mozilla browser. Mozilla is
the best choice because it is open source and easy to integrate
with. Some part of the mechanism can be written even in
grease monkey plug-in using JavaScript. Therefore, we can
distinguish the dynamic part.

As a result, a set of dynamic components is created,
including controls. If by activating some control, we capture
communication we name it a resource and store to the
database the content. The content itself can also be static and
dynamic – that can be easily checked by series of tests by
activating the same control with all possible feasible values.

Every dynamic component even noise is marked as a
resource. Resources must have values so we must assign some
parameters to components. In general, it is array of strings.
The component can change its image, size (shape), text. First,
we try with the latter and analyze the corresponding piece of
code with regular pattern of readable letters. A dictionary or
some method of word recognition is applied at that stage. If
the procedure fails, we try to determine size change by
differential analysis of series of images of the component and
calculating overall estimate. If that approach also fail then we
consider set of images and enumerate them in some way.

IV. BEHAVIOR ANALYSIS
 We perform a series of tests and try to find out restrictions

and behavior. The user specifies the gain function and the
model to use. While testing the gain is maximized by the
following strategy:

Do nothing for some time and see what changes. Compute
gain and make decision: if nothing changes or gain decreases
–do some action, if gain increases do nothing for some time.

Do some action. Compute gain. Wait. Compute change in
time and make decision: if nothing changes or gain decreases
–do some action, if gain increases do nothing for some time.

In fact the idea is nearly to be Monte-Carlo method but with
some little improvements. As a result, we obtain parameters of
the behavior model of the site and a strategy of maximizing
gain function.

There is still a problem of choosing appropriate model and
it will be a further research which ones are better.

V. EXPERIMENTAL RESULTS
The idea was implemented in a computer program. The

main features of the program are the following:
• Separate static and dynamic content
• Use only natural user environment – that means

HTTP protocol
• Have some feedback mechanism
• In dynamic content distinguish resources and

action controls
• Provide some mathematical models for modeling

function F
• Determine parameters of the model in a test series.

The tests were provided for the online game Travian. The
account was manually created. Then the program worked.
First, it used sniffer and applied the differential analysis to
HTTP content, so resources were determined. Then by
automatic browser, control the program clicked on the
webpage and analyze if anything changed except the
previously determined resources or if we went to other page
by hyperlink. If something changed but we did not go to other
page, it tried to see if some data can be input first by analyzing
source code and if failed, by trying to “click and input”. The
number of manipulations (clicks and inputs) was limited by a
parameter. The “successful” combination meant resources
change or page change and was recordered in database.
Grouping was made by the webpage position of the
component. The initial step was 10 pixels (between clickable
points) and if a successful combination was found for some
point, the area of component was determined by repeating the
same actions for points nearby. The program distinguished
resources components and determined the dependency of
resources from time and actions, so that automated building
was easily available. The program was also tested at the site
smotri.com where the broadcast components and broadcast
indexes were distinguished so it made available to construct a
page similar to smotri.com broadcast page but without
advertisement. Many problems occur in analyzing complex
structures, model fitting, and war analyzing -that will be the
topic of further research and improvements.

VI. CONCLUSIONS

As web becomes more and more sophisticated, the problem

of analyzing sites at the functional level will grow. The
analysis at the user level provides large flexibility and
transparency. A game model is applicable to some even non-
game sites. A suggested concept of analyzing components and
behavior naturally and empirically proved its value and
however many problems emerge they are solvable and need
further research.

REFERENCES
[1] http://en.wikipedia.org/wiki/Web_2.0
[2] Analyzing conversations of web services T Bultan, X Fu et. al. IEEE

Internet Computing 2006
[3] Jyotishman Pathak, Samik Basu et al. On Context-Sensitive

Substitutability of Web Services In 5th IEEE International Conference
on Web Services -2007

[4] ANALYZING USER BEHAVIOR On The Web, Eelco Herder, Ph.D.
Thesis, University of Twente, 2006

[5] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze,
Introduction to Information Retrieval, Cambridge University Press.
2008.

http://en.wikipedia.org/wiki/Web_2.0

	I.
	I. Preface
	II. A game as a general model for a site
	III. COMPONENT ANALYSIS
	IV. Behavior analysis
	V. EXPERIMENTAL RESULTS
	VI. Conclusions

