

Creation of Automaton Classes from Graphical Models and Automatic

Solution for Inverse Problem

Yuri Gubin

 DataArt

ygubin@dataart.com

Kirill Timofeev

DataArt

ktimofeev@dataart.com

Anatoly Shalyto

SPbSU ITMO

Abstract

Graphical models – integral part of any program

development. Using graphical models facilitates

analysis of their architecture and understanding of

logic.

This work shows how to automatically transfer

automaton code into graphical isomorphic model,

using Java programming and DOT modeling

languages.

1. Introduction

Currently in the design of programs with complex

behavior actively used tools for graphical

representation of logic and structure, for example,

UML[1]. They make it possible to analyze the

program, working with its components, rather than

source code. The graphical presentation makes it easy

to debug, and provides the means to address possible

shortcomings and mistakes.

Automaton library for graphical representation of

state machine will be developed in this work using

language with static types Java. It should to provide the

possibility of creating automaton classes and

automatically transfer them to isomorphic graphic

model. This library implements the domain-specific

language (DSL, Domain Specific Language [2]), which

will allow:

• to check and modify the program without any

knowledge of Java programming language by

experts of the subject area;

• to provide failure–resistance of developed

program;

• to work with the code using terms of subject area -

to improve the readability of source code.

The library has been developing for object-oriented

programs with explicit allocation of states and state

machine to describe behavior of them [3].

The purpose of this work – the implementation of

the automatic transfer of automaton classes (automated

classes [3]) executable code to isomorphic graphical

model (reverse engineering). As an example,

automaton of user registration on Web site from the

Restful-authentication plug-in [4] will be implemented.

2. Description of the algorithm of

automatic transfer of the executable code

to isomorphic graphical model

The proposed algorithm converting the following

components of a state machine to a graphical

representation:

1) states that do not belongs to any group;

2) groups, and nested groups;

3) nested states and transitions.

Components of state machine can be read using

meta information of automaton class, or easily from

arrays of elements.

The result of the algorithm will be a model in text

language DOT [5]. This language provides ability to

describe different graphical components (applied to

automaton – states, transitions and groups). Also it

allows editing styles of components.

As an example, a model of two parallel processes

described in this language:

digraph G {// Name of oriented graph
 subgraph cluster0 {// process #1
 // Styles
 node [style=filled,color=white];
 style=filled;
 color=lightgrey;
 // Nodes and
 a0 -> a1 -> a2 -> a3; arcs
 // Name of the group
 label = "process #1";
 }
 subgraph cluster1 {// process #2
 node [style=filled]; // Style
 // Nodes and arcs
 b0 -> b1 -> b2 -> b3;
 // Name of the group
 label = "process #2";
 color=blue // Border color
 }
 // Nodes and arcs
 start -> a0;
 start -> b0;
 a1 -> b3;
 b2 -> a3;
 a3 -> a0;
 a3 -> end;
 b3 -> end;
 // Styles for the initial and final
 // nodes

 start [shape=Mdiamond];
 end [shape=Msquare];}

Dot (dot) utility from graphviz [6] package is using

to get the image from the DOT model description.

Figure 1 shows a graphical representation of the

model obtained from the description in DOT language

shown above.

Figure 1. An example image described using

the DOT language

It is known how to transform each component of

automaton class into DOT language. States, groups and

transitions can be represented as a formatted string. So,

we need to process states firstly, then groups and

nested states and later transitions. Using this order we

would not create duplicated nodes in DOT model and

result will be easy to use.

For example transition could be transformed into

start -> a0; where start and a0 is a names of

states. State could be saved just as a0 and group could

be saved as
subgraph clusterGroup{
label=”name of group”
;}
Getting presentation in DOT language from all

components we can create an output model.

3. The implementation of the library to

create an object-automaton programs

To ensure compliance with the objectives develop

the automaton library, which will allow effectively

implementing of the automaton classes firstly, and,

secondly, will contain a class that provides automatic

transfer of executable code to the graphical isomorphic

model. The development of automaton library is taken

into feature of further conversion of automaton Java

classes into DOT text description.

The developed library includes the following

classes:

• State – class, provides ability to specify functions

at the entrance to the state and at the exit from it;

• Transition – transition between states and groups.

Allows to specify functions during transition;

• StateGroup – group of states.

• DSL – base class for automaton classes. This class

contains all needed common functionality for

automaton class (i.e. methods for event reading,

default constructors and etc.).The DSL class also

includes method Compile for setting up initial

state of automaton using metadata of automaton

class.

Classes State, Transition and StateGroup inherited

from common class Entity. This class provides basic

properties, which allow uniformly processing of all

components.

This library published in «Projects» section on

http://is.ifmo.ru.

Creation of automaton classes for application is

based on the library classes. Each of such automaton

classes includes described method and all needed

common functionality.

Feature of the developed library is that it uses

anonymous classes for implementing functions in

states and transitions. Anonymous class – is a local

class without name. It has been creating and initializing

in single expression [7]. This allow us to use them

instead of lambda functions of Ruby language [4] for

creating states and transitions with all needed functions

without separated declaration of methods. Interfaces

Guard and Action have been using to create described

anonymous classes.

As an example, consider the graphical model of an

automaton (Figure 2).

Figure. 2. Model of an automaton.

Create Java automaton class for proposed model

with developed library.

import java.util.*;
import automaton.*;
public class Sample extends DSL{
 public State c = new State("C",
// Anonymous class for event on state
// entrance
 new Action() {
 public void go(){
 System.out.println(
 "Come to state C");}
 public String toDOT() {
 return "Print message";}
 },
 null,null); // No other events
 public StateGroup group =
 new StateGroup("Group");
 public Transition tgc =
 new Transition("GC","C",group,c);
 public Transition tcg =
 new Transition("CG","E",c,group);
// Will be created in constructor
 public Transition tbc;

// Constructor
 public Sample () {
 Vector <Entity> groupEntity =
 new Vector<Entity>();
 State a = new State("A");
 State b = new State("B");
 groupEntity.add(a);
 groupEntity.add(b);
 groupEntity.add(
 new Transition("AB","A",a,b));
 groupEntity.add(
 new Transition("BA","B",b,a));
 tbc = new
Transition("BC","D",b,c);
 group.setAll(groupEntity);
 }
}

Note that separated method for state entrance is not

required in this code, because code was developed

using anonymous class with implemented needed

logic. Using of developed library provides:

• creation of methods for states and transitions by

means of anonymous classes without duplicated

separated methods [8];

• inheritance of automaton classes without

additional tools;

• syntactic attractiveness.

4. Implementation of automatic isomorphic

transfer algorithm in the library

In previous section it was shown how to create an

automaton class with developed library. Proceed to

consider the inverse problem.

Consider this algorithm on an example of

automaton of user registration on Web site from the

Restful-authentication plug-in. User registration

consists from follow actions:

• fill the registration form;

• enter an activation code;

• fill the personal information.

Administrator can perform follow action:

• delete user and it personal information from

system.

Figure 3 shows the expanded graphical notation [9],

which describe automaton for registration.

Figure 3. Automaton for registration

This automaton includes the following states:

• Suspended – user is waiting;

• Pending – user should to confirm registration by

activation code;

• Active – user registered;

• Passive – user only logged in registration system;

• Deleted – user removed.

Group «ActivationG» contains states, in which user

acts with registration system.

For its creation, it is necessary to define the

collection of states and transitions for group.

Determination of the group’s structure occurs when the

defined collection is passed to the constructor of group.

Creation of group placed in constructor of automaton

class, so group keeps it structure during inheritance.

Create automaton class BasicUser (described on

Fig. 3):

import java.util.*;
import automaton.*;
public class BasicUser extends DSL{
 public State deleted =
 new State ("Deleted");
 public State suspended =
 new State ("Suspended");
 public StateGroup activation =
 new StateGroup("ActivationG");
 Vector <Entity> activationStates =
 new Vector <Entity> ();
 public Transition
 activation_suspend =
 new Transition(
 "Activation_suspend", "suspend",
 activation, suspended);
 public Transition
 activation_delete =

 new Transition(
 "Activation_delete", "delete",
 activation, deleted);
 public Transition suspend_passive;
 public Transition suspend_pending;
 public Transition suspend_active;
 void createActive() {
 State stateA = new State(
 "Pending enter mac");
 activationStates.add(stateA);
 State stateB =
 new State ("passive");
 activationStates.add(stateB);
 State stateC = new State (
 "Active enter DA");
 activationStates.add(stateC);
 Transition tran1 = new Transition(
 "passive_pending", "register",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "guard";}},
 null, stateB, stateA);
 activationStates.add(tran1);
 Transition tran2 = new Transition(
 "pending_active", "activate",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "";}},
 null, stateA, stateC);
 activationStates.add(tran2);
 suspend_passive = new Transition(
 "suspended_passive",
 "unsuspended",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "not (guard1 or guard2)";}
 },
 null, suspended, stateA);
 suspend_pending = new Transition(
 "suspended_pending",
 "unsuspended",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "guard1"; }
 },
 null, suspended, stateB);
 suspend_active = new Transition(
 "suspended_active",
 "unsuspended",
 new Guard() {
 public boolean is() {
 return true;}
 public String toDOT() {
 return "guard2";}

 },
 null, suspended, stateC);
 activation.setAll(activationStates);
}
 public BasicUser () {
 super () ;
 createActive () ;
 }
}

Implementation of algorithm for transform to

isomorphic graphic model requires additional methods

for all classes, used in automaton class. As described in

section 2, each component class should contain method

for transforming it to DOT. More over this each

actions and guard conditions should to be converted to

DOT too.

Implementation of the algorithm:
public String toString () {
 String res = "";
 String subgraph = "";
// Setup header
 res = "digraph " + "veryuniqname" +
" {\ncompound=true;\n";
// state, groups – extracted using
// reflection from automaton class
// method toString of State,
// Transition and StateGroup convert
// them to DOT representation
 for (State state:states) {
 subgraph+=state.toString(mode); }
 for (StateGroup state:groups) {
 subgraph+=state.toString(mode); }
// get all transitions described in
// class
 for (StateGroup sg:groups) {
transitions.addAll(sg.subtransition);
 getAllSubTransitions(sg);
 }
 for (Transition t:transitions) {
 subgraph += t.toString()+"\n";
 }
// adding border for model
 subgraph = "subgraph cluster0{\n"
+ subgraph + "\nlabel=\" "+dsl_name+"
\"}";
 res+=subgraph;
 return res;

 }

Get DOT text description of automaton class by

developed method DSL.saveToFile, which implements

algorithm of automatic transfer of code. Figure 4

shows image generated by dot utility from gotten text

description.

Figure. 4. Graphical model of BasicUser

automaton.

5. Analysis of image data obtained by the

algorithm of automatically isomorphic

transfer

Practical interest is in the reverse engineering of

complex inherited automaton classes.

Consider an automatic isomorphic transfer of

automaton class AdvancedUser inherited from

BasicUser automaton class. Automaton class

AdvancedUser is bringing to registration follow

functionality:

• to avoid spam registrations user should to type

value of CAPTCHA;

• administrator can block user;

To do this, add the following groups:

• Activation – includes group Active, extended by

«Captcha» state;

• Deleted – includes two states: «Blocked» – for

blocked users and «Deleted» – for deleted users.

Graphical notation for described automaton shown

on figure 5:

Figure 5. Extended automaton for registration.

Application of the developed algorithm and a

method for automatically isomorphic converting for

implemented AdvancedUser automaton class provides

graphic image presented in figure 6.

Figure 6. Graphical model of AdvancedUser.

Model obtained by automatic isomorphic transfer

(Fig. 6) in line with earlier developed model (Fig. 5)

Thus, the solution of transfer сode to graphical

isomorphic model problem provides an additional

analytical tool for debugging of existing logic,

introducing additional functionality or inheritance of

automaton classes.

6. Conclusion

Library for automaton classes creation had been

developed in this work. The library allows:

• inherit automaton classes and nest groups;

• create methods for states and transitions (also

guard conditions);

• eliminate duplication of code and multiply

separated methods by using anonymous classes.

Also algorithm of automatic transfer of automaton

classes executable code to isomorphic graphical model

had been developed. Automaton of user registration

from Restful-authentication plug-in developed and

described transfer of them into graphical model (Fig.

6). It was shown that the initial model of automaton

corresponding to a graphic representation, obtained by

library’s function for developed automaton class.

The results of this work will be used in further

studies:

1) dynamic and static verification of automata

displaying counterexamples in visual form, using the

reverse engineering;

2) the establishment of libraries, which will facilitate

the testing process of automaton classes.

7. References

[1] F. A. Novikov Visual design of programs, «Information

and control systems». 2005. # 6,

http://is.ifmo.ru/works/visualcons/

[2] T Parr. The Definitive ANTLR Reference: Building

Domain-Specific Languages. Texas: Pragmatic Bookshelf,

2007.

[3] N. I. Polikarpova, A. A. Shalyto Automaton

programming. SPb.: Piter, 2009.

http://is.ifmo.ru/books/_book.pdf

[4] A. A. Astafurov, K. I. Timofeev, A. A. Shalyto,

Automata Classes Inheritance in Dynamic Language Ruby ,

Software Engineering Conference (Russia) 2008.

http://www.secr.ru/etc/secr2008_artyom_astafurov_automata

_classes_inheritance_in_ruby.pdf

[5] E. Gansner, E. Koutsofios, S. North.Drawing graphs with

dot. http://www.graphviz.org

[6] Graphviz package. http://www.graphviz.org

[7] Academy of Modern Programming.

http://www.amse.ru/courses/oopjava/12.php

[8] E. A Zayakin., A. A. Shalyto, The method of eliminating

repetitive code snippets in the implementation of finite

automata. SPbSU ITMO, 2003.

http://is.ifmo.ru/projects/life_app/

[9] D. G. Shopyrin, A. A. Shalyto The graphical notation of

inheritance automaton classes. «Programming»" 2007. # 5

http://is.ifmo.ru/works/_12_12_2007_shopyrin.pdf

