

1

Abstract — this paper describes an ongoing research aimed on

the creation and implementation of a set of transformations of

executable UML (Unified Modeling Language) models that

would improve the execution performance while preserving the

behavior. Additional information useful for transformations can

be extracted from the constraints embedded in the model. The

article contains an example of informal description of a

transformation, a scheme of modeling environment extension

implementing such transformations, and a review of related tools.

Index Terms — Constraint Programming, Computer Aided

Software Engineering, Model Transformation, Object Constraint

Language, Program Optimization, System Modeling, Unified

Modeling Language.

I. INTRODUCTION

N recent years Model Driven Development methodology

(MDD) has drawn much attention among software

development industry. According to the MDD software

models become the only first class artifacts of the

development process; and the whole system creation is seen as

a sequence of model refinements starting with the very

abstract system model and ending with the model that can be

executed performing the functions of the system. This makes

models fully reflect the complexity of the system being

created and hence readdresses to models many problems

previously related to source code in traditional programming

languages like Java or C++. Moreover since models contain

the description of system behavior precise enough to be

executed, the efficiency of behavior specification becomes

crucial and cannot be ignored for example for systems that

have requirements on their performance. According to our

experience complex models usually have a great potential for

optimization, however such optimizations are time consuming

and error-prone if done manually. Therefore there is a strong

need for model optimizing tools.

This paper describes optimization of models in the Unified

Modeling Language (UML) [1], since it is de facto an industry

standard language for software modeling. However the future

results of our study may be applicable to other modeling

languages, e.g. domain specific, if they use similar formalisms

for specifying system behavior. Behavioral features of the

system can be expressed in UML by means of activity, state

Andrey Karaulov, Alexander Strabykin, Institute for System Programming

(ISP) of the Russian Academy of Sciences, Russia, 109004, Moscow,

Solzhenitsyna st., 25. Emails: {aka, alexs}@ispras.ru.

machine, and sequence diagrams. The latter rather describe a

behavior resulted from the interaction of all the participants,

but do not exactly specify the behavior of each single party

and are used more for scenario definition and logging. Often

the expressiveness of UML often is not enough to fully

describe the semantic details of a system. In such situations

constraints written in Object Constraint Language (OCL) [2]

can be used in order to better reflect the semantics. Also OCL

can be used to define queries, derived attributes etc, but

constraints are usually specified by means of class invariants

and pre- and post-conditions of operations.

The goal of our research is creation and implementation of

the new methods of optimizing executable UML models. The

distinguishing feature of selected approach to model

optimization is extraction of additional information needed for

model transformations by analyzing constraints embedded in

the model. The model therefore is considered as for sure

holding all the constraints it contains and the issues of

constraint violations are left out of the scope of the paper. This

is a common situation when constraints express hardware

limitations or other conditions the system should only perform

under.

II. RELATED WORKS

A typical model execution scenario consists of several

stages including generation of code in a programming

language, code compilation and execution. On each stage

some optimizing transformations can be applied. For example,

compilers that transform source code into executables can

apply a variety of optimizations like function inlining, loop

unrolling, etc [3]. All these transformations certainly can be

applied when a code generated from a model is compiled.

Despite most of such transformations can also be applied

directly to UML models, since the language standard provides

a way to specify all standard actions like loops, conditions etc;

in this paper we deal with the higher level transformations that

operate on UML models. This approach gives an optimizer the

advantage of viewing the system as a whole, since the models

fully describe the system behavior. Moreover on a UML level

even semantic details expressed in constraints, which are

usually unavailable on lower levels, can be analyzed while

performing optimization. Optimizations applied to source code

in traditional programming languages can have two usually

conflicting goals: optimizing either memory usage or

performance. Since UML standard lacks information related to

memory allocation and distribution our research concentrates

Constraint-based Optimizations of Executable

UML Models

Andrey Karaulov, Alexander Strabykin

I

2

on performance optimizations while memory issues are left to

be dealt with on lower levels.

Software refactoring is a process of changing the internal

structure of an object-oriented program that preserves the

observed behavior and is aimed on simplification of

modifications and improvement of the readability and design

[4]. Since UML is an object-oriented language a lot of

refactoring transformations can be applied to UML models

[6]; sometimes as a side effect of their application the

performance can be improved, but this is not the goal of

refactoring. UML models have some specific constructs like

state machines and activities that have no direct analogues in

traditional object-oriented programming languages. The

optimizations of our interest have to preserve the behavior of

the system being transformed like refactorings; however the

main purpose is a more effective execution of the model.

Moreover unlike compiler optimizations optimizing

transformations being studied should be visible to user and

may rely on user decisions.

UML state machines are based on finite automata

formalism, which has been proposed for more than thirty years

ago. There are a number of techniques created to minimize

automata by means of removing equivalent states [9].

Application of these methods to UML state machines is

complicated by the fact that transition equivalence cannot be

proved without proving the equivalence of the actions being

performed when transition is fired. However proving actions

equivalence is not a trivial task if complicated semantics of

UML actions is taken into account, since general problem of

equivalence of two programs is algorithmically unsolvable.

Another group of related works we are aware of studies the

problem of model transformations in general, since it is the

key activity of MDD. UML models are usually considered as

labeled multigraphs as in [6]. In this case transformation of

UML models can be based on graph rewriting formalism. A

model optimizer of our interest can be implemented as an

extension of a model transformation framework. The most

important features of such framework would be extensibility,

capability of defining complex and parameterized

transformations, and support of constraint analysis in models

being transformed.

GReAT language described in [5] is a Graph Rewriting and

Transformation language. It contains sublanguages for

specifying patterns, transformation rules and control flow for

advanced transformation. Extensibility of transformations is

achieved by adding user-defined code in a procedural

language to specify attribute mapping, which is performed

after all graph related operations are done. This approach does

not seem suitable for implementing heavy model analysis that

must be done before optimizing transformations are executed.

Visual Modeling and Transformation System [7] is

modeling environment that allows creating and transforming

UML models with OCL constraints. It has a visual language to

define complex transformations similar to UML activity

diagrams. Matching mechanism uses metamodel approach i.e.

is looking for a part of a model that can be identified as an

instance of a metamodel pattern. Transformation constraints

can be defined in OCL and are finally transformed to C# code.

The whole system is also implemented in C#, which limits the

platforms it is available for. There are no means provided for

simplification of the analysis and according to [15] the

performance of VMTS turned to be a number of orders of

magnitude worse than that of Fujaba.

FUJABA (From UML to Java And Back Again) [8] was

initially developed as UML modeling tool with code

generation to Java. Later a visual language for model

transformation based on graph rewriting was added.

Transformations are defined by means of Story Diagrams,

which can be seen as a mixture of UML activity and

collaboration diagrams. For each transformation Java code

implementing it is generated. The framework can be extended

by means of plug-ins and the Fujaba itself can be integrated

with Eclipse modeling environment [12]. Support of model

constraint analysis is also absent.

The only tool that provides some model analyzing

capabilities, which might be helpful when implementing

optimizing transformations, is MagicDraw with ParaMagic

plug-in [11]. However it uses System Modeling Language

(SysML) [10], not UML. Since SysML models can contain

parametric diagrams specifying relations e.g. equations among

system variables. Mentioned plug-in allows in some cases

resolving the equations, but cannot currently work with OCL

constraints in the model.

Any of the tools mentioned does not provide all the features

needed for convenient implementation of transformations

optimizing model performance. It means that this issue should

be studied further in detail before the final decision is made,

but a new solution designed with support of optimizing

transformation in mind is likely to be created by authors in

case no other tool is found to meet all the requirements.

III. CAUSES FOR MODEL DEFECTS

There can be many reasons why UML models may be

optimized. The most common case is a mistake of a user

creating the model. Modeling languages have higher level of

abstraction compared to those of traditional programming

languages and therefore operate with the concepts that are

closer to the problem domain, not to the programming

language domain. Even users that do not have a professional

knowledge in programming, but have it in the problem domain

can develop software systems with MDD. However such users

are more likely to make mistakes in design and

implementation and hence should be supplied with the tools

detecting and preventing them.

Another typical situation emerges in case of component

reuse. The reuse of components from other systems or

component libraries can save a lot of time and effort, but at the

same time can lead to ineffective or redundant models. This

drawback may be overcome if there is an optimizer that can

transform the components being reused in the system into

more effective ones taking into account the semantics of the

system being created. For example if we consider a

component that implements the process of organization of

computers into a tree-structure according to standardized

3

protocol. Tree structures are used for example to implement

multicast functionality in computer networks. Protocols

standards usually describe several roles that participants can

play during the interactions according to the protocol. For a

tree-structure organization there are three basic roles a

computer modeled as a class with a state machine can play in

the interaction: newcomer – a computer that would like to join

a multicast tree; root – a computer that accepts join requests of

the newcomers and ex-son – a computer that was a part of the

tree, but needs to find a new parent because of tree

reorganization [16]. A reusable component implementing this

protocol should cover all the roles and cases described in the

standard. However when being used in a particular system

such implementation can be redundant if for example a model

contains constraints that limit protocol implementation to

certain roles only. For instance a certain system can make ex-

son roles to be impossible. An optimizer in this case should be

able analyze the constraints, detect, and remove statemachine

elements needed only for implementation of redundant roles.

Behavioral features of UML models can even be generated

automatically, for example on the basis of the formal

specification or a complete set of test cases. Generated models

also need to be checked for their performance, since often

there is a lot of space for improvement.

IV. TOOL SUPPORT

The transformations we study can be implemented as an

extension to existing integrated modeling environment like for

example Eclipse Modeling Framework [12]. The module can

be divided into two parts Analyzer and Transformer as shown

in fig. 1. The following workflow looks natural when working

with the extension. When one wants to optimize the model he

activates the corresponding command in the modeling

environment. This can be done automatically when code

generation is performed. Analyzer then checks the model and

reasons about contained constraints.

Fig.1. The Scheme of Optimizers Work

The purpose of analyzer’s work is to provide additional

information that might be helpful for optimization. The

principles of its work are similar to those of partial evaluators

[13]. In the beginning as a feasibility study we limit the types

of supported constraints to algebraic expressions using

operation parameters and class attributes e.g. self.salary > 0.

Despite visible simplicity according to [14] such constraints

are quite common in real systems. Analyzer iteratively

propagates constraints over UML model actions. For example,

if an input parameter x : Integer of an operation is constrained

to be in range [0;c] and the first action of the operation

declares a local variable y, which is initialized as 2x, then the

constraint can be propagated to that statement and limit the

values of y to be within the interval [0;2c]. As a result of

analyzer’s work all actions in the model get a set of associated

constraints. These results are available to Transformer module.

Transformer contains a set of transformation descriptions.

For user convenience this set should be as flexible as possible,

i.e. a user should be able to include and exclude

transformations from that set. Moreover it is highly desirable

that a user can create new transformations from scratch or by

combining already existing transformations. A description of

the transformation contains a pattern that is matched against

user model and constraints defined on this pattern that must be

satisfied. The patterns are defined on a metalevel that makes

them independent on the model they are matched with.

Therefore the matching process is not a search for a part of the

model that is isomorphic as multigraph to the pattern being

matched, but a search for a part of the model that is an

instantiation of the metamodel pattern. In case all the pattern

constraints are observed the transformation is added to the list

of possible operations. After the matching for all active

transformations is completed a user is presented with the list

of possible operations for review and confirmation. In order to

avoid undesired changes, e.g. those caused by a mistake in

constraints, a user should be able to easily find out which

constraints in the model made certain transformation possible.

It is also important to keep the history of transformations for

convenient use; this will allow reverting changes later if

requested by user.

For a feasibility study the transformation that removes dead

branches from the condition action can be considered. The

pattern of this transformation matches all the choice pseudo

states of state machines in the model. The constraint of this

transformation should state that the estimated by Analyzer

range for the expression on which the decision is based

intersects with the only decision answer range. In this case all

other answer transitions can be removed from the model as

they are never fired. Transformation for decision nodes from

activities specifications is defined similarly. The ways of

formal specification of such transformations are currently

under investigation by the authors.

V. CONCLUSION AND FUTURE WORK

The spread and adoption of MDD by the industry of

software development not only requires availability of the

tools supporting MDD, but effective execution of the models

being created with such tools, therefore transformations that

can optimize performance of UML models are highly

4

demandable.

Current results of our research include the preliminary

analysis of available tools supporting UML model

transformation and the ways optimizing transformation can be

formally described. The work will be continued in the

following directions: new optimizing transformation will be

created; model transformation tools study should be completed

to decide the best implementation way; and the effectiveness

of the transformations application will be studied on real

industry projects.

REFERENCES

[1] Object Management Group. OMG Unified Modeling Language (OMG

UML), Superstructure. http://www.omg.org/docs/formal/09-02-02.pdf

[2] Object Management Group. Object Constraint Language
http://www.omg.org/docs/formal/06-05-01.pdf

[3] S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997.
[4] M. Fowler. Refactoring. Improving the Design of Existing Code.

Addison-Wesley, 1999.

[5] D. Balasubramanian, A. Narayanan, C. vanBuskirk, G. Karsai. The
Graph Rewriting and Transformation Language: GReAT. The

proceedings of the Third International Workshop on Graph Based Tools,

2006.
[6] Mens, T., N. Van Eetvelde, S. Demeyer and D. Janssens, Formalizing

refactorings with graph transformations, Int’l Journal on Software Tools

for Technology Transfer 17 (2005), pp. 247–276.
[7] Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model

transformation with a visual control flow language. International Journal

of Computer Science 1(1) (2006) 45–53.
[8] FUJABA Homepage, http://wwwcs.upb.de/cs/fujaba/

[9] B.W. Watson, A taxonomy of finite automata minimization algorithms,

Eindhoven University of Technology, The Netherlands. Computing
Science Note 93/44 (1993).

[10] Object Management Group. OMG Systems Modeling Language.

http://www.omg.org/docs/formal/08-11-02.pdf
[11] InterCAX SysML Parametric Solvers. http://www.intercax.com/sysml

[12] Eclipse Modeling Framework Project (EMF)
http://www.eclipse.org/modeling/emf/

[13] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation

and Program Generation. PrenticeHall, 1993.
[14] Wahler, M., Ackerman, L., Schneider, S.: Using IBM Constraint

Patterns and Consistency. Analysis. IBM Developer Works, May 2008.

[15] A. Rensink, A. Dotor, C. Ermel, S. Jurack, O. Kniemeyer, J. de Lara, S.
Maier, T. Staijen, and A. Zündorf. Ludo: A Case Study for Graph

Transformation Tools. In A. Schürr, M. Nagl, and A. Zündorf, editors,

Applications of Graph Transformation with Industrial Relevance,
Proceedings of the Third International AGTIVE 2007 Symposium,

volume 5088 of LNCS, Heidelberg, 2008.

[16] Dolejs, O. Tree Building Control Protocol - State Machine. Prague:
CTU, Faculty of Electrical Engineering, Department of Control

Engineering, 2001. K335/01/210. 9 s.

http://wwwcs.upb.de/cs/fujaba/
http://www.omg.org/docs/formal/08-11-02.pdf

