
Verification and testing automation of UML projects

Nikita Voinov, Vsevolod Kotlyarov
Saint-Petersburg State Polytechnic University, Saint-Petersburg, Russia

voinov@ics2.ecd.spbstu.ru, vpk@ics2.ecd.spbstu.ru

Abstract – This paper presents an integrated approach to

verification and testing automation of UML projects. It consists
of automatic model creation from UML specifications in the
formal language of basic protocols, model’s verification by the
means of VRS technology and automatic tests generation in
TTCN language using TAT. The actuality of this task arises from
necessity of software functionality’s correctness checking,
including verification and testing, but there is lack of industrial
technologies which allow integrating these two activities. Results
of the developed approach piloting are also described.

I. INTRODUCTION

Documents describing software requirements can contain a
large amount of miscellaneous types of errors, the main of
which is difference between requirements adopted and
detailed by technical specialist and customer’s initial
requirements. Enormous help in solving this problem is
brought by using of formal languages and notations for
requirements development. These notations allow customer
and developer programmer to speak one language and lead to
extermination of specifications’ ambiguity of different types.
Formal notations and formal methods of software quality
control are often used in software development practices. The
most popular graphical formal language is UML (Unified
Modeling Language) [1]. This standard contains a wide range
of graphical objects and allows creating system description
from different points of view.

One of the main tasks the software developers have to solve
is software functionality’s correctness checking, which starts
from development of software requirements and lasts until
software withdrawal. This causes high demands to
completeness and productivity of this checking and leads to
appearance of new technologies and program instruments for
automation of software functionality’s correctness checking,
which includes verification and testing.

Although there are a lot of miscellaneous instruments of
verification (Spin (BellLabs laboratory), SCR (NavalResearch
laboratory), VRS (ISS organization), etc. (see [2, 3] for
review)) and testing automation (Rational Rose (IBM), TAT
(Motorola), Together (Borland), etc. (see [4] for review)), two
serious problems can be stated. The first one is lack of
industrial technologies which allow integrating testing and
verification. This is especially important when a huge amount
of system’s behavioral scenarios have to be verified in order to
guarantee its correctness and this have to be done in limited
time. Secondly, verification based on model checking (when a
model of the system is created and requirements for every
possible model’s state are checked) uses some formal
language to create a model of the system and the process of

model creation from formal specifications is quite long and
laborious.

This paper outlines the main principles of verification and
testing automation of UML projects, including automatic
model creation from UML specifications in the formal
language of basic protocols, model’s verification by the means
of VRS technology and automatic tests generation in TTCN
[5] language using TAT (Test Automation Toolset) [6].
Results of the approach’s piloting on large telecommunication
program project are also presented.

II. APPLIED TECHNOLOGIES

A. Basic Protocols

Basic protocol is a formal representation of an assertion
about some actions that have to be applied in a program or
algorithm under some conditions. In a general case a basic
protocol is a Hoare’s triplet [7] in the following notation:

where and are the pre-condition and the post-condition

respectively and µ – is the process part of the basic protocol.
Both and conditions are specified by logic formulas of

the basic protocols language (a variant of the first-order logic)
which can be evaluated for any state of the system.

Basic protocols can be consistently concatenated through
their pre- and post-conditions – if the state specified by the
post-condition of one basic protocol is to the same as the one
specified by the pre-condition of the next basic protocol
(actually, the pre-condition formula of the successor should be
derivable from the post-condition formula of the predecessor).
All such possible concatenations construct the model’s
behavior graph to be processed by verifier.

The language of basic protocols has an MSC-type syntax [8]
and basic protocols can be presented in two ways: textual and
graphical (MSC/PR and MSC/GR) [9].

В. VRS Technology

This technology is capable to verify models represented
with basic protocols, from small to huge ones. As a result,
various incidents of non-deterministic behavior, unreachability
of specified system states, or deadlocks are detected. If no
such defects are found, the system model is formally proved to
be complete and consistent within the specified constraints.

Automated verification of software systems with VRS
technology implies the functional requirements, which were
used for system implementation, and system’s model in the
form of basic protocols created from the source code, formal
specifications, etc. The technology checks that the model

meets the system requirements. This means that the software
system satisfies them as well.

For verification process an ordered list of signals or basic
protocols that contain required events (actions, signals, etc.)
should be specified. VRS can check that for this model the
behavior graph contains paths which include the specified
sequences in the specified order. The existence of such paths
(traces) is a proof of correctness of the model behavior with
respect to this criterion. Search of such traces is realized by
looking for respective signal interaction between agents or by
looking for the specified basic protocol names in the generated
traces and considering their actual ordering.

Thus, a trace is a scenario of a possible model behavior.
Since the model was derived from an actual implementation of
a program system, we can say, that a trace is a scenario of an
actual system behavior. Scenarios are represented as
consistent concatenations of relevant basic protocols into one
chain. VRS outputs traces in the MSC/PR view.

Results of verification are automatically summarized in a
verification report, which describes all found inconsistencies,
discrepancies, deadlocks, and other errors in the model. Traces
demonstrating the incorrect model behaviors are attached to
the report. They are used to identify the root causes of such
incidents.

Traces generated by VRS can be used for automated
creation of an exhaustive test suite for the program system.
The TAT (Test Automation Toolset) tool is used for
automated test generation from those traces along with the
respective testing environment and subsequent test runs.

C. TAT (TEST AUTOMATION TOOLSET)

A key to make testing technologies cheaper and more
efficient lies in the area of test generation techniques, i.e.
efficient and compact description of test sets and thus
significantly reduces tester’s manual efforts to develop them.
Another key is visualization of formal description by means of
graphs. These problems are solved by testing automation tool
– test generator TAT.

TAT is a joint toolset, which provides complete, fully
automated testing cycle based on user-defined scenarios
developed in formal language MSC - Message Sequence
Charts.

TAT encompasses several tools that offer complete set of
solutions for efficient specification analysis and test
generation.

In addition to standardized MSCs, TAT supports extended
MSC notations, enhanced with macros, allowing significant
reduction of code size developed manually. This extended
notation allows absolute, relative, and more complex time
specifications in test scenarios. With such framework, TAT
helps to get significant time and cost savings through reuse
and efficient workaround of time and macro definitions.

III. MAIN STEPS OF VERIFICATION AND TESTING AUTOMATION

A. Autoformalization of UML Specifications

Before using VRS for verification purposes, system’s
requirements shall be described in the language of basic
protocols. Manual creation of such description is laborious
process and can be compared with manual development of test
cases in this regard. In some situations the process of
formalization can be hastened by automatic creation of basic
protocols from initial specifications. This approach is called
“autoformalization”.

In those UML projects, where system’s specification is
presented as a state machine, respective set of basic protocols
can be generated automatically by using special tool –
uml2bp, which in fact is a module of VRS. This module
generates sets of basic protocols for every state machine in
Telelogic Tau G2 project with .ttp extension as well as creates
files with environment and events description, needed for VRS
project. All generated files can be imported to VRS for
verification.

Example of generated basic protocol is shown in Fig.1.

Fig. 1. Converting of a piece of UML state machine diagram into a basic

protocol

B. Vefification with VRS

Basic Approach to Verification with VRS

The procedure to check a requirement – is a direct
formulation of a sequence of observable causes and results of
some activities; after analyzing this sequence a conclusion can
be derived whether the requirement is satisfied or not. Such
procedure may be used as a criterion for meeting this
particular requirement. Basically, the criterion procedure is a
method for checking satisfiability of a requirement. Term
“chain” can be used for the criterion procedure.

After identifying in the behavioral scenario (hypothetical
one or implemented in a real system or system model) the fact
that such criterion is satisfied, one can state that the respective
requirement in the system being analyzed is satisfied as well.

A procedure for checking requirements (a chain) is specified
through formulating all its elements: initial conditions (causes)
required for performing a certain activity, the activity itself
and observed results of performing the respective activity.

In particular cases to describe the causes and results the
states of variables (in form of their values or constraints for
tolerance range) may be used. These variables are employed
by the activity to track the state changes. In case of non-
determinism, possible variants of state changes are tracked. A
direct transition from one state to another with a void activity
is also possible.

All the above refers to constructing a use-case for a
particular requirement. So, a chain or use-case with sequences
of activities and states may serve as a criterion for
satisfiability of a requirement, sufficient to demonstrate it.
Non-determinism in formulations is also covered with a
number of chains or use-cases.

Realization of verification stage

Step 1. Formulation of filters and heuristics for the current
project (after set of basic protocols as well as files with
environment and events descriptions have been generated).
They help to decrease number of traces by pointing the trace
generator to the definite direction.

Step 2. Performing an automatic trace generation cycle.
Step 3. Analysis of findings with deadlocks, inconsistency

and other issues, which prevent the tool from completing trace
generation in the Goal or Restricted states. Fixing problems
identified in findings and their review with the developers.
Based on the review results correcting the generated basic
protocols or initial requirements. Repeat steps 1-3.

Step 4. Analysis of generated traces with a script to check
whether the coverage criteria are satisfied. Repeat steps 1-4 if
needed.

Among traces generated by VRS user can choose those
which should be used for automatic tests generation with
TAT.

Manual creation of VRS traces

Another useful feature supported by VRS is manual creation
of traces with user defined order of basic protocols (on each
step of trace generation user himself chooses the protocol from
the list of protocols, which can be applied now). This helps to
cover concrete scenario of model’s behavior on all possible
levels of abstraction. Described below is example of this
feature.

Sample UML state machine diagram is shown in Fig.2.

Fig. 2. Sample UML state machine diagram

Its main part is four composite states (Suspended,

UDI_LDI, UEI_LEI, UEA) and transitions between them.
Each composite state is in turn a state machine itself with
complicated behavior inside.

Uml2bp module converts the whole state machine into the
set of basic protocols. They are imported to VRS for model’s
analysis.

Basing on the set of basic protocols, a graph of the model
can be constructed. Fig.3 shows the graph without detailed
behavior of four composite states.

Fig. 3. Graph with composite states

It is also possible to expand any composite state to examine

its detailed behavior. Fig.4 shows the same graph but with
detailed behavior of Suspended state.

Fig. 4. Graph with detailed behavior of Suspended state

Detailed behavior is represented by a number of states

(ovals) with transitions between them. Each transition is
performed by a basic protocol. So, in accordance with the
graph, one can construct his own trace in interactive mode of
trace generation with any abstraction level (high level or
detailed) for all composite states and for the whole initial state
machine. Traces covering high level behavior of initial state
machine and one of possible scenarios of Suspended state’s
detailed behavior are presented in Fig.5 and Fig.6 respectively.

Fig. 5. Sample trace of high level behavior of initial state machine

Fig. 6. Sample trace of Suspended state behavior

Now these two traces can be merged: the second trace can
be glued in to the respective part of the first one, where
Suspended state is covered as composite state. Traces merging
is presented in Fig.7.

Fig. 7. Traces merging

Traces created in interactive mode can also be used for

automatic tests generation.

C. Automatic Tests Generation with TAT

The approach described below is aimed at automatic tests
generation on standard language of telecommunication
applications testing – TTCN (Testing and Test Control
Notation). The proposed approach allows test engineers to
exclude manual development and focus on test scenarios,
which hastens testing and bugs detection process.

Tests generation process is supported by number of scripts
and templates of automatic generation of result TTCN-files.
Scripts and templates use auxiliary files with data types
description, signals templates description, configuration
description, etc.

Tests generation is based on using two input files: a trace
(scenario) with signals and their parameters and .xls file,
which contains values for parameters used in this trace.

Overall scheme of the process is shown in Fig.8.

Fig. 8. Automatic tests generation scheme

Several steps can be listed in generation process:
 Automatic generation of functions description, which

provide access to the system under test according to
signals in the diagram. File with functions description

is imported to test project. As a result, only functions
calls will be used in test scenario without their
bodies.

 Automatic assignment of values to signals parameters
in the diagram. Values are taken from .xls file. If one
signal is presented several times in the diagram and
values of its parameters change, it also should be
mentioned in .xls file.

 Generation of test suite from MSC file with assigned
parameters values. TAT’s template is used on this
step.

 Generation of auxiliary TTCN-file, which performs
test suite execution.

After that all generated files are imported to test project. As
project is compiled and built, test suite can be executed in
automatic mode. Test results are saved in log-file.

IV. RESULTS OF PILOTING

The described approach to verification and testing
automation was performed on one of the modules of
telecommunication project of wireless network. Estimated size
of the whole network’s model is about 50000 basic protocols.

About 4000 basic protocols were generated on the stage of
autoformalization of the module under test, which took three
minutes of uml2bp work. Concerning the fact that estimation
for manual creation of basic protocols is 10-50 per day, time
saving is obvious and considerable.

Model’s verification with VRS discovered about 100
findings. 12 of them were considered to be defects and fixed
in future versions of the product.

Automatic tests generation also takes just several minutes,
which is much less than manual development. Even
considering the efforts required on creation of UML diagram
and .xls file for concrete test run adjustment, time savings are
estimated as several hours. Besides, when initial requirements
are changed or new ones are added, it is enough just to modify
initial UML diagrams and spend several minutes on another
cycle of tests generation instead of long process of manual
correcting the test code with possibility to introduce new
errors. Requirements changes during the project realization
happen very often, which is caused mainly by large size of
projects. This makes the described feature more actual.

V. CONCLUSION

The developed approach to verification and testing
automation proved its advantages in a large
telecommunication project and can be further reused in other
projects based on UML specifications. As this development
process is one of the most preferable nowadays, the field of
this approach application enlarges.

REFERENCES
[1] UML Distilled Second Edition. A Brief Guide to the Standard Object

Modeling Language.

[2] Visser W., Havelund K., Brat G., Park S., and Lerda F. Model checking
programs. Automated Software Engineering Journal, 10(2), April 2003.

[3] Fernandez J.-C., Jard C., Jeron Th., and Viho C. Using on-the-fly
verification techniques for the generation of test suites. In Proc. 8th
Conference on Computer Aided Verification, volume 1102 of Lecture
Notes in Computer Science, New Brunswick, August 1996.

[4] Drobintsev P.D. Integrirovannaia tehnologia obespechenia kachestva
programmnih produktov s pomoshiu verifikacii i testirovania. Kand.
dis., SPbGPU. 2006. 238 p.

[5] .ITU-T Recommendations Z.140-142 (2002): The Testing and Test
Control Notation Version 3 (TTCN-3).

[6] TAT+Beta User's Manual © 2001-2005 MOTOROLA.
[7] Hoare C.A.R. Communicating sequential processes, Prentice Hall,

London, 1985.
[8] Letichevsky A., Kapitonova J., Letichevsky Jr., A., Volkov V., Baranov

S., Weigert T. Basic protocols, message sequence charts, and the
verification of requirements specifications, Computer Networks: The
International Journal of Computer and Telecommunications Networking,
v.49 n.5, p.661-675, 5 December 2005.

[9] ITU Recommendation Z.120. Message Sequence Charts (MSC), 11/99.

