
The Automated Analysis of Header Files for Support of the Standardization
Process

Eugene Novikov
ISP RAS

joker@ispras.ru

Denis Silakov
ISP RAS

silakov@ispras.ru

Abstract

This paper considers the method of the header files

automated analysis. The method is intended for the LSB
standardization process support. The suggested
approach is based on the usage of the cpp preprocessor
and gcc compiler high-level representation, their
extensions and additional analyzers. The basic work
stages of tool implementing the suggested method are
introduced. Also tool application for the Qt library
header files analysis is considered.

1. Introduction

Now in the world a large number of Linux

distributions exists [5]. They are widely applied in
various systems. All distributions in their basis have the
same components. However, components versions
depend on system. Also distribution developers make
some specific changes for their systems. Therefore at
the binary level Linux distributions are not completely
compatible and programs, created for one operating
system, sometimes can not be started in another without
recompilation from their source code. So application
developers, who don’t publish source code, should
either make many efforts and spend much time for
maintenance of compatibility at the binary level or
release their products for the limited number of
distributions [1]. Because of such complexities there are
no fully reliable and valid applications in Linux for
some software areas [6].

The similar problem of Unix distributions
fragmentation has led to POSIX standard creation [7].
This standard contains requirements for core interfaces
(about 1000 functions) and does not describe other
interfaces. For example, it does not describe graphical
interface functions that are used by the most of modern
applications.

Project LSB (Linux Standard Base) [2], [4] is aimed
to help developers to create and support portable

applications for Linux operating system. In all
distributions, supporting the LSB standard, binary files
of these applications will be executed equally. In
comparison with POSIX, LSB standardizes essentially
more interfaces (about 40000 functions). The basis of
the whole LSB standardization process is the LSB
specification database. From its information it is
generated:
• LSB standard text;
• primitive tests;
• environment for LSB-compatible applications

development.
To estimate the scale, basic objects of the LSB

database and their quantity at the current moment are
shown in Table 1.

Table 1. The basic objects of the LSB database
Libraries ~60
Header files ~900
Interfaces ~47000
Types ~16000
Macros ~12000
Classes ~1600

From Table 1 it becomes clear that data volume is
large. In addition Linux operating system and
applications are constantly developed. So the LSB
standard covers more and more libraries. Therefore it is
necessary to support the database in up to date state.
This is done by updating of stored information and
uploading of the new one. Thus today the LSB database
population automation problem is very actual.

2. The review of existing methods and

tools for LSB database population

Data collection can be performed on the basis of

following sources:
• libraries binary files (with debugging information

and without it);
• libraries header files.

At the moment the LSB database is populated in
general with data obtained from the libraries binary files
analysis. Considerable data volume is modified and
uploaded manually.

There are tools that automate both binary and header
files analysis. libtodb and libtodb2 [8] allow to process
binary files. These tools are based on the readelf system
utility [11]. For header files processing the tool
headertodb [8] based on the ctags program [9] may be
used. These tools allow to automate the process
substantially but they do not give all needed
functionality.

The main advantages of the binary files analysis are
possibilities to obtain:
• the list of interfaces exported by library;
• binary symbols versions.

This data is important to provide with compatibility
at the binary level support. Disadvantages of the libtodb
and libtodb2 analysis are:
• absence of some data at the binary level (e.g. inline

functions);
• insufficient C++ support at the binary level;
• absence of interrelations between complex types at

the binary level;
• complexity of the large data volumes processing by

means of libtodb.
The tool headertodb allows to obtain a considerable

part of data from header files but, due to insufficient
analysis of the ctags program, it does not provide
demanded completeness and quality. The C++ analysis
also is not supported at the necessary level.

In this paper the header files analysis method that
allows to eliminate the most of disadvantages specified
above is described. This method makes analysis and
population the LSB database LSB with obtained
information essentially automated. Also the tool
implementing the suggested method is described. It is
necessary to notice that many features of the method
and the tool are connected with necessity of their
application for Qt library header files processing [12].
These header files are written in C++ language.
Previously they were processed mainly by hand. This
paper considers practical results of these header files
automated analysis.

3. The method of the header files analysis

To obtain data from header files the cpp

preprocessor and the gcc compiler parser [11] are used.
The suggested approach has such advantages in
comparison with the usage of other programs (e.g. ctags
mentioned above) and the creation of the own analyzer
as:

• Presence of analyzers (cpp and gcc) which are
constantly supported by third-party developers.
These analyzers allow to obtain data from the high-
level representations that posses considerably more
simplified and formalized structure in comparison
with initial representation of header files (i.e. a
standard text). This was the key feature in choosing
of the method to be used.

• Maintenance of the most detailed analysis of Linux
libraries header files. It is due to very close
connection of the cpp preprocessor and the gcc
compiler with the given operating system. Header
files are processed by them with specific Linux
features and different extensions, many of which are
made especially for the given preprocessor and
compiler. In addition, the third-party analyzers
automatically carry out the code correctness check
and connect header files with each other.

• The openness of the cpp and gcc source code. This
important feature is necessary for more accurate
understanding of their high-level representations
structure. Also this allows their modification needed
to obtain additional data.
Disadvantages of such approach are:

• Absence of the detailed documentation on the used
high-level representations. Syntax and semantics of
these representations were explored by testing on
different examples. It is important to notice that all
the necessary, what may be obtained from these
representations for the Qt library header files
analysis, was studied and implemented. Necessary
researches were performed basically directly on
header files from the given library and also on more
simple examples, including header files written in C
language.

• Incompleteness of data obtained from the high-level
representations. First of all this comes from the fact
that cpp and gcc are intended to compile programs
and do not specialize in these representations
generation. Therefore there may be no some needed
information in the preprocessor and compiler
representations. In that case some cpp and gcc
source code modifications, extending these high-
level representations, and additional analyzers are
made. Extensions and additional analyzers will be
introduced below.

• Possible preprocessor and compiler representations
changes by third-party developers require changes in
their analysis. It is necessary to tell that during the
time, while the tool processing these representations
was developed (about one year), syntax has not
changed at all while small changes in semantics for
some entities have facilitated their interrelations
analysis.

Thus, it becomes clear that disadvantages of the
suggested method may be eliminated and in many
respects it was already done. Therefore it is possible to
enjoy advantages of the approach. Following sections
describe this.

3.1. The cpp preprocessor high-level

representation structure

For parsing tree generation discussed below the

compiler gcc uses header files source code after
preprocessing by cpp. So the parsing tree does not
contain any information on preprocessor directives. The
cpp preprocessor output and the additional analyzer are
used for the preprocessor directives analysis. The
preprocessor output is used to obtain the lists of:
• macrodefinitions declarations (directive #define);
• removals of macrodefinitions declarations (directive
#undef);

• included header files (directive #include).
In this output there are auxiliary strings between

which there are directives #define, #undef and
#include and preprocessed code of the analyzed
header file and included header files. It is important to
notice that:
• Comments and non-significant spaces (for example

spaces between # and a directive name) are removed
from directives.

• Multiline directives are transformed into one-line
ones with corresponding additional empty strings.

• Lines numbers in the cpp output and directly in
header files coincide with each other. Also each
directive is fully placed on its own string. These
features are important to order preprocessor
directives with other entities from header files.
Here formats of auxiliary strings and directives

#define, #undef and #include are described:
 # a line number in a header file
“an absolute path to a header file”
o Subsequent strings, up to the next auxiliary string

or to the end of file, are content of the analyzed or
included to it header file. This content begins with
the given line number.

o Absolute paths uniqueness allows to distinguish
header files with identical short names, e.g. time.h
and sys/time.h. So this gives the way to order
entities from different header files. In addition,
absolute paths to included header files are remained
for their unique identification.

 # 1 “<built-in>”
o Following strings contain system macrodefinitions

that are declared by the preprocessor implicitly.
o This list may be obtained by means of the

headertodb3 tool described below.

 # 1 “<command-line>”
o Following strings contain macrodefinitions that are

declared by the user in the cpp preprocessor
command-line.

o User macrodefinitions may be declared by means of
the headertodb3 special option. In particular, it is
possible to redefine system macrodefinitions.

 #define a macrodefinition name a
macrodefinition value
o Macrodefinition declaration.
o A macrodefinition value is arbitrary string, in

particular it may be absent.
o Functional macrodefinitions are declared in form: a
functional macrodefinition name
(parameters names divided by
commas) a functional
macrodefinition value.

 #undef a macrodefinition name
o Macrodefinition declaration removal.
 #include “a header file name” or
#include <a header file name>
o This means that a currently processed header file

includes another one. Included files are searched
according to the standard preprocessor rules.
Therefore it is important to specify correct paths to
directories that will be explored for included
headers.

o Following two strings contain absolute paths to
including and to included header files.

3.2. The gcc compiler high-level representation

structure

Preprocessed header files are processed by means of

the gcc compiler parser. This parser allows to obtain the
parsing tree. The parsing tree is the internal compiler
structure that is used to represent information on source
code. The tree is generated by gcc after lexical,
syntactic and semantic analyses. Also the compiler may
write the parsing tree in the text representation. The
parsing tree text representation structure is not well
documented. Research of this structure on examples
allowed to make its description.

The parsing tree consists of nodes and their
attributes. Nodes correspond to entities. Attributes
describe their kinds and properties. In the text
representation all nodes are written at the beginning of
strings in the form @integer, e.g. @475. After a node
name a list of attributes corresponding to this node is
written. The first attribute specifies an entity kind. For
example, to represent the integer type the first attribute
integer_type is used. The first attribute has a name
and has no value. Below various entities kinds will be
characterized directly by the first attribute.

Subsequent attributes describe entity properties. In the
text representation they have the following form an
attribute name: an attribute value, e.g.
name: @249. An attribute value may be one of the
following kinds:
• a reference to another tree node (e.g. @12);
• some text information (e.g. long double);
• a place in a header file where an entity is declared

(e.g. /usr/include/time.h:412:12).
A reference to another tree node specifies that some

entity property is described by means of another entity
represented by another node. For example, the function
declarations function_decl may have attribute
name: @11 that refers to the identifier entity
identifier_node. In turn the identifier has the
attribute with the function name value. The function
name is written in the usual text form and belongs to the
second kind of attributes. An entity declaration place is
described in the following form an absolute path
to a header file: a line number in
this file: a column number in this
file. Such form is the gcc compiler extensions. These
extensions were made since the original declaration
place form looked like a header file name: a
line number in this file. It appeared that it
is not enough both to uniquely identify header files (for
example, entities from header files time.h and
sys/time.h were concerned as belonging to the same
header file time.h) and to order entities placed at the
same string. Thanks to compilers extensions these
disadvantages were eliminated. To designate system
entities <built-in> is used as a header file name.
System entities are, for example, intrinsic types
such as void, int, bool, etc. Thus attributes values
belong to one of three classes each of which is
processed in the appropriate way. Some attributes may
have identical names, e.g. note and spec. For such
attributes all their values are obtained as values vectors.
Despite attributes names coincidence for some entities
all properties are unambiguously and consistently
defined by a pair an attribute name, an
attribute value.

Entities, important to obtain the necessary
information from header files, belong to one of the
following classes:
• declarations;
• types;
• constants;
• auxiliary entities.

The complete description of all entities structure and
the method of their analysis is huge and is not
considered within the bounds of this paper.
Nevertheless the description of four representatives for

each class is given below. For such description the
analysis of entities attributes and properties that may be
obtained is done.

3.2.1. Function declaration. The first attribute of

this entity is function_decl. Subsequent attributes
names and values are:
• name is a reference to an identifier
identifier_node, a function name.

• type is a reference to a functional type
function_type, a complete description of a
function signature.

• scpe is a reference to a function scope, whether a
namespace declaration namespace_decl or a
parent class record_type.

• srcp is a function definition place in a header file.
• note (optional and multiple-valued) is member

(for a class method) or constructor (a class
constructor) or destructor (a class destructor) or
operator an operator name.

• accs (optional) is access to a class method. It may
be pub, priv or prot that accordingly designates
public, private and protected.

• spec (optional) is a class method specifier. It may
be virt or pure that is designations for virtual
and pure virtual accordingly.

• args is a reference to parm_decl, the first
element of a function arguments list containing their
types, names and qualifiers.
To obtain additional needed information on a

function declaration the following extended attributes
are added:
• ext_qual (optional) is a class method qualifier. It

may be const or volatile.
• ext_note (optional) is explicit (an explicit

class constructor), extern or static (a function
specifier), inline (an inline function), throw (a
throw function).

• ext_body (optional) is a reference to the
beginning of a tree expression corresponding to a
function body.

• ext_body_open_brace (optional) is an
opening brace place, the beginning of a function
body.

• ext_body_close_brace (optional) is a closing
brace place, the end of a function body.
According to attributes following information on a

function declaration is obtained:
• A function name or an overloaded operator name.
• Return value type.

• For function arguments their types, names, default
values and qualifiers are obtained. If a function
arguments list has not variable length, last parameter
is always intrinsic type void.

• A function parent, a namespace or a class.
• Whether a function is extern or static, inline, throw,

virtual.
• For methods access to them, whether a method is

const or volatile, whether a method is a constructor
or a destructor are obtained. For constructors
explicit property is obtained.

• An inline function body place in a header file. It is
necessary to take corresponding block directly from
a header file without expression parsing.

3.2.2. One-dimensional array type. The first

attribute of this entity is array_type. Subsequent
attributes names and values are:
• elts is a reference to an arbitrary type, a type of

one-dimensional array elements.
• domn (optional) is a reference to an integer constant
integer_cst, the number of one-dimensional
array elements.
It is important to notice that multidimensional arrays

are formed as a one-dimensional arrays sequence. A
base types sequence is ‘natural’ i.e. from the fullest type
to the basic one. Therefore processing of
multidimensional arrays is recursive. In case of empty
array usage (for example, int []) array_type has
not attribute domn, containing the number of elements.
Also it is necessary to pay attention, that in one-
dimensional (multidimensional) array passing to
function as argument, it is transformed to a pointer (an
array of pointers). For example, int [10][20][30]
becomes int * [20][30].

3.2.3. Integer constant. The first attribute of this

entity is integer_cst. Subsequent attributes names
and values are:
• type is a reference to an integer type
integer_type or to an enumeration type
enumeral_type that is an integer constant type.

• low is some arbitrary integer number, an integer
constant value.
Integer constants are enumerations elements values,

arrays and bitfields sizes, global variables default values
and function arguments or templates parameters default
values. In the case when used integer constant belongs
to some enumeration type, its name must be used
instead of corresponding numerical value.

3.2.4. One-linked list element. The first attribute of
this entity is tree_list. Subsequent attributes names
and values are:

 purp:
o for an enumeration type enumeral_type is a

reference to an identifier identifier_node, an
enumeration element name;

o for a functional type function_type (optional)
is a reference to an arbitrary constant, a function
argument default value;

o for a template declaration template_decl, an
attribute inst value is a reference to tree_vec,
an attribute prms value is a reference to
integer_cst.

 valu:
o for an enumeration type enumeral_type is a

reference to an integer constant integer_cst, an
enumeration element value;

o for a functional type function_type is a
reference to an arbitrary type, a function argument
type;

o for a template declaration template_decl, an
attribute inst value is a reference to
record_type (a template instance), an attribute
prms value is a reference to tree_vec;

 chan (optional) is a reference to tree_list, a
following element of an one-linked list.
One-linked lists are processed depending on a

context in which they are used.

3.3. The additional analyzers

There are not preprocessor conditional compilation

directives in the cpp output. Therefore they are analyzed
directly through header files. The following conditional
compilation directives groups are processed:
• Conditions are preprocessor directives specifying

the beginning of conditional compilation. #if,
#ifdef and #ifndef belong to this group.
Conditional expressions must be for these directives.
A conditional expression follows a directive name.

• Branches are instructions about possible variants in
execution. Directives #else and #elif belong to
this group. Conditional expression must be for
directive #elif.

• The end of conditional compilation is expressed by
means of directive #endif.
During the conditional compilation directives

analysis non-significant spaces and multiline strings are
processed. Such analyzer does not possess the cpp
preprocessor completeness. Therefore in future

some corresponding preprocessor output extensions will
be probably made.

Besides, auxiliary comments, having the special
form, are processed:

 LSB parameters are instructions about how included
header files must be analyzed. These comments are
placed at the beginning of header files from the
beginning of lines. They have such form /* LSB
PARAM: a parameter name */. At the
moment it is necessary to process the following LSB
parameters:
o fresh means that entities from an included header

file should be processed as well as entities of an
analyzed header file.

o print means that LSB IDs discussed below are
printed for entities from included header file.

o end means the end of a LSB parameters section.
 LSB IDs are unique integers which are associated
with entities from included header files. These
integers are obtained during the corresponding
header files analysis and kept into LSB database.
Comments are placed on strings before
corresponding entities. They have such form /*
LSB ID: an integer number */. Then
LSB IDs are used to refer on already processed
entities.
Special comments are written into header files

mainly automatically. This is done for files that were
already analyzed and generated on the basis of the LSB
database. These comments may be located in header
files of any acceptable inclusion depth. So they are
analyzed for all these levels. The latter is possible
because of the preprocessor output has all included
header files content. In the future new special comments
may occur to provide additional needed functionality.

3.4. The high-level representations

extensions

To obtain some additional information a number of

gcc parser extensions was made. Some extensions were
already mentioned above. At the moment the full
extensions list is the following:
• More detailed entities definitions place in header

files.
• Distinction between structure and class types joined

by the compiler together into the general internal
type record_type.

• Attributes correct form i.e. an attribute
name: an attribute value (e.g. attribute
bitfield for bitfields).

• Access to type declarations scoped in a class.
• Function declarations properties (inline, throw,

const, volatile, etc.).

• Function bodies trees included in the general parsing
tree.

• Function bodies in the form of their places in header
files.

• Exception types lists.
• Escape-sequences in string constants.
• Function definitions and type declarations

prototypes places.
• Absence of the unnecessary precompiled header

files generation.
• Absence of information on the unnecessary gcc

system functions in the tree text representation.
Extensions are made on the basis of the gcc

compiler source code analysis. Usually they do not
demand any considerable changes and do not affect the
gcc work. Extensions supplement the compiler high-
level representation and give more detailed set of
entities properties. It allows to avoid the difficult
manual analysis. So it automates populating of LSB
database with data in very considerable degree. Some
extensions optimize the compiler analyzer work.
Therefore in future the extensions list will be increased
to perform more and more detailed and qualitative
analysis as fast as possible.

4. The headertodb3 tool

The tool called headertodb3 was developed to

implement the high-level representations analysis. Tool
input is libraries header files. A great number of various
options allow to control the headertodb3 analysis and
output. Also many settings are available through the
special configuration file. Headertodb3 works
automatically after options specifying. If corresponding
options are enabled then headertodb3 informs about its
actions and displays additional debugging information.
In case of some critical error occurrence (e.g. error in
cpp or gcc work) the tool finishes work with the
corresponding return value. During the work the tool
performs the following steps:

 Command-line options processing. Depending on
these options the tool performs different analysis
kinds. Below the headertodb3 standard work scheme
is presented.

 Initializations that headertodb3 uses in the work.
The main is the primitives initialization. Primitives
consist of intrinsic types, C and C++ keywords
and some auxiliary information. Primitives are used
during the parsing tree analysis to connect tree
conceptions with the language ones.

 The preprocessor directives analysis on the basis of
the cpp output.

 The special comments analysis on the basis of the
cpp output with comments. It is made by means of
the additional analyzer.

 The conditional compilation directives analysis by
means of the additional analyzer.

 The gcc compiler parsing tree generation. Its
conversion to the tool internal representation that
will be used in the further parsing tree analysis.

 The parsing tree analysis. This is the main stage
during the tool work. The general work scheme at
this stage is the following:
o entities ordering in that sequence in which they are

encountered in header files;
o the ordered entities analysis by means of the special

handlers.
 Temporary folders and files removal.
During its work the tool generates the following

files into the special folders:
• The text file with information on preprocessor

directives. This information is used by other tools to
obtain inclusion interrelations between header files.
It is needed to construct a sequence in which header
files will be analyzed by headertodb3. By means of
the tool special option this analysis may be
standalone.

• The major SQL-script with information on all
entities, their properties and interrelations. The LSB
database may be directly populated with this script.
It is necessary to notice that some additional tables
are used in the database to store information from
C++ header files. Then other tools use information
from the LSB database to check different
dependencies and to generate header files and
corresponding to them HTML pages.

• The text file with information on function bodies
places in header files. This may be used for the
following functions bodies processing.

• The text file containing information on errors that
the tool faced during the work. Information on
failures kinds and failures locations is printed here.

• In addition by means of the tool special options it is
possible to obtain text and HTML representation of
the gcc parsing tree. The parsing tree in the HTML
page form is convenient for navigation between
nodes. Therefore everybody can walk quickly
through the parsing tree by means of a usual
browser.
The tool was developed by degrees. The tool first

version is headertodb2. It is intended to process header
files written in C language. During the headertodb3
creation the corresponding experience was taken into
account and many innovations were brought. Tools
were tested on real header files from C and C++
libraries. Also the test scenarios were made on the basis
of different real situations and arisen errors. They

consists of about 1000 various test cases that cover C
and C++ languages and the compiler extensions. All
these test cases may be passed automatically. It is very
important to immediately trace malfunctions that may
occur during tools development. Thanks to the
automated testing system both headertodb3 and other
tools errors were found out.

At the moment the most important check of
headertodb3 tool is its application in Qt4 library [12]
header files processing. By means of the tool
information shown in Table 2 was obtained.
Table 2. Headertodb3 application in the Qt4 library

header files analysis.
 libQtCore libQtGui

Header files 85 183
Interfaces and their
parameters

4450,
4520

9720,
10360

Classes, structures,
unions and their fields

440,
385

990,
610

Enumerations and their
constants

160,
1975

320,
2180

Templates, their
parameters, instances
and specializations

240,
340, 130,

80

155,
155, 150, 0

Type declarations by
means of typedef 290 240

Macrodefinitions 290 190
Included header files 190 460
Entities including
auxiliary ones 22760 40310

Properties and
interrelations of
entities

87830 161030

Also headertodb3 was applied in other Qt4 header
files processing and in Qt3 library processing.

5. Conclusion

At the moment the header files analysis needed for

populating the LSB database with data is one of the
most important stages of the LSB standardization
process. Initially header files written in C++ language
were processed either manually or with the usage of the
analyzers which do not correspond to all demands. As a
result huge human resources were required to solve this
problem.

This paper considers the method that allows to
automate the C++ header files analysis. The approach is
based on the usage of the cpp preprocessor and gcc
compiler high-level representations. It allows to use
analyzers for header files from third-party developers
and to process and extend the more strictly formalized
and simpler high-level representations. The suggested
method was implemented in the headertodb3 tool.

The tool was used to populate the LSB database with
data within the Qt library standardization process. On
the basis of tool application results it is possible to
make the following general conclusions:
• The method allows to analyze header files with high

quality.
• The approach provides required C++ support.
• The tool does not demand considerable computing

resources and time expenses.
• The tool makes the header files analysis

substantially automated.
In the future additional high-level representations

extensions are supposed. It will allow to analyze header
files in the more qualitative and automated way.

References

[1]. A.I.Grinevich, D.A.Markovcev, V.V.Rubanov.

Linux systems compatibility problems. The Institute for
System Programming proceedings, the 10th volume: “Linux
systems reliability and compatibility ensuring”. In Russian.

[2]. A.V.Horoshilov. Linux Standard Base: success
history? The Institute for System Programming proceedings,
the 10th volume: “Linux systems reliability and compatibility
ensuring”. In Russian.

[3]. D.V.Silakov. Current state and perspectives of the
LSB infrastructure development. The Institute for System
Programming proceedings, the 13th volume, the 1st part. In
Russian.

[4]. Linux Standard Base. http://www.linux-
foundation.org/en/LSB

[5]. The Linux distributions list.
http://www.lwn.net/Distributions

[6]. D.Shurupov. The programs lack as a barrier to the
Linux popularization. In Russian.
http://www.nixp.ru/articles/plugging_linux_holesD.Shurupov

[7]. IEEE POSIX® Certification Authority.
http://standards.ieee.org/regauth/posix

[8]. The LSB Infrastructure Project. http://ispras.linux-
foundation.org

[9]. The ctags program.
http://www.ctags.sourceforge.net

[10]. The cpp preprocessor and the gcc compiler.
http://www.gcc.gnu.org

[11]. The readelf system utility.
http://www.opensourcemanuals.org/manual/readelf

[12]. The Qt library. http://www.qtsoftware.com

