
1

Designing a Development Environment
to Support Creation

of Standard-Compliant Applications

Denis Silakov

Institute for System Programming, RAS
http://ispras.ru/

Linux Verification Center
http://linuxtesting.org/

SYRCoSE 2009. 28-29 May, 2009, Moscow

http://ispras.ru/
http://ispras.ru/
http://ispras.ru/
http://linuxtesting.org/

2

Using Standards

Developers

Implementation 1

Implementation N

Implementation 2

Standard

3

Develop for Standard?

Implementation

Std Part Non-Std Part

Build Toolchain

4

Possible Approaches

“Careful” development
Ideal implementation
 mobile device emulators
 “sample implementations” (LSB, OpenGL)

Systematic testing
Restricted environment inside the real
implementation
 '-std' option of gcc
 LSB Development Environment (LSB SDK)

5

Implementation-based Environment

Idea
Take any compliant implementation and drop non-
standardized items

Challenge
 Standard evolves
 Implementation evolves
How to reflect the changes in the environment?

6

Database Driven Approach

Database

Existing Implementation

Adopted Implementation

Data Collection Tool

Generator

Workgroup

7

Database Design

What to store?
 Everything that depends on the standard
 Data used in more than one tool

Configuration flags
 Is particular entry is included in the standard?

Item interdependencies
 Dependencies in the real world → foreign keys in
the database

8

Generator

Skeleton
+

Data from the DB
=

Generated Environment

9

Configuration Flags

Function Header Incuded?

gets stdio.h No

fgets stdio.h Yes

puts stdio.h Yes

fputs stdio.h Yes

/* begin stdio.h */
extern int puts (const char *);
extern int fputs (const char *, FILE *);
extern char *fgets (char *, int, FILE *);
/* end stdio.h */

10

Support Multi-Version Data

Temporal Database
 Time intervals – appeared in v1, dropped in v2
 Extra fields for extra status – optional in v3

Specifics
 Discrete time values
 Valid time only
 Small number of possible values
 Correlations in time intervals for interdependent
items

11

Time Intervals

Function Header Appeared Withdrawn

gets stdio.h 1.0 1.2

fgets stdio.h 1.0 NULL

puts stdio.h 2.0 NULL

fputs stdio.h 2.0 NULL

12

LSB Development Environment

 Header files (generated)
 Stub Libraries (generated)
 Compiler wrapper – forces system compiler to use
 LSB headers and link against LSB libraries

13

LSB SDK – MutliVersion Tool

Headers – driven by LSB_VERSION constant

#if LSB_VERSION >= 10
#if LSB_VERSION < 20
 extern char *gets (char *);
#endif
 extern char *fgets (char *, int, FILE *);
#endif

Libraries – separate file for every LSB version

14

Generated Code vs Generator Code

Generators Generated Code

SLOC 2,500 156,300

Development
effort estimate

0,6 person-
years (7 person-
months)

39 person-years

Total
estimated cost
to develop

$70,000 $5,250,000

15

Approach Advantages

 Create environment not from scratch
 Consider only important parts of implementation
(database schema = abstraction model)
 Automated synchronization
 (in case of automated tools)
 Support for several versions of the standard

16

URLs & Contacts

● LSB Infrastructure Project
 http://ispras.linuxfoundation.org

● LSB at the Linux Development Network
 http://ldn.linuxfoundation.org/lsb

● Denis Silakov
 silakov@ispras.ru

