
Designing a Development Environment to Support
Creation of Standard-Compliant Applications

Denis Silakov
Institute for System Programming

at the Russian Academy of Sciences
Moscow, Russian Federation

Email: silakov@ispras.ru

Abstract—This paper presents an approach of developing a
special environment to help application developers to create
programs compliant with some interface standard. The paper
suggests a design of the informational system aimed to make
it easier to develop and to maintain such an environment on
the basis of the existing systems, with necessary modifications
in the areas concerned by the standard. To store information
about existing systems and to facilitate their modification, it is
suggested to use a database with a set of accompanying tools.
Necessary aspects of the database schema design are described,
as well as some aspects of the tool architecture.

Index Terms—Data management, Reverse engineering, Soft-
ware requirements and specifications, Software standards.

I. INTRODUCTION

In the modern software world, it is a common situation
when several concurrent implementations exist that provide the
same functionality to their users (either human beings or other
software applications). From the user’s point of view, it would
be nice if all systems with the same functionality (that are
targeted to solve the same problems) have the same interaction
interface – in this case it wouldn’t be very hard to replace one
implementation with another (that was found to be faster, more
convenient, etc.) and users will not be bound to a particular
solution. In order to achieve such interchangeability, different
interface standards are being developed that specify the set of
interfaces that every compliant system should provide.

However, in addition to the standard set of interfaces every
system is usually not forbidden to provide some extra ones,
that can be unique to it and absent on other platforms. This
raises a problem for those developers who want to create ap-
plications interacting with the system by means of the standard
interfaces only (in order to guarantee that the application will
be able to interact with any other system compliant with the
same standard). For example, in order to make the application
sources be compilable by any C language compiler that is
compliant with the ANSI C standard, developers should use
only those language constructions and library routines that
are defined in that standard; in order to make the application
binaries able to be executed on any distribution compliant
with the Linux Standard Base [1], they should use only LSB
interfaces, and so on. But how to ensure that the application
doesn’t use any extra interfaces? To be sure, developers can
consult documentation on every external interface used by the
program. However, this can take significant time, especially if

developers are not yet familiar with the standard. Moreover,
sometimes dependencies on undesirable interfaces may appear
indirectly, as a side effect of the environment used to build the
program. For example, for binary executables some dependen-
cies on binary interfaces can be introduced by compiler on the
basis of its options, environment variables, etc. Sometimes it
can be rather hard to detect and eliminate such indirect usage.

One of the possible ways to automate the control of used
interfaces is to create a tool (or use an existing one, if any)
that will check used interfaces and report any violation of
the standard. If integrated in the build process as a part of
the tests, such a tool can be used to detect wrong interfaces at
early stages of the development process. However, the checker
itself can only state a fact of violation, but not to point out
the reason and help to fix it. In particular, it doesn’t solve the
problem of interfaces that are not used directly but introduced
by the build environment.

An ideal solution would be to use a real system that is
compliant with the standard and at the same time doesn’t
provide any non-standard interfaces. Unfortunately, for many
standards such implementations don’t exist, and it can be quite
expensive (or even impossible) to create one from scratch.
It appears to be more reasonable to take an existing system
compliant with the standard, to cut its non-standard pieces
and to set it up properly. Such a restricted environment
can be either a self-sufficient system (like the LSB Sample
Implementation [2]) or be integrated in the existing system,
providing only those components that are covered by the
standard (like the OpenGL Sample Implementation [3] or the
LSB Development Environment [4]).

One should keep in mind here that every standard evolves
over time, and all the tools accompanying the standard should
be kept in sync with it. Furthermore, it is not uncommon
when several versions of the same standard are demanded by
software developers, so specification developers should either
support a set of separate versions of helper tools or create
tools that can support any specification version from some
given set. Modern interface standards often describe hundreds
or even thousands of interfaces and evolve quickly by adding
more and more interfaces to satisfy market needs. Surely,
all accompanying tools should not be left behind; however,
the process of their development and support can be even
harder then the development of the standard itself. Nowadays,

an approach is required to organize, facilitate and automate
(where possible) this process to allow specification creators to
concentrate on their primary target – specification text.

The remainder of the paper is structured as follows: Section
2 observes some existing approaches of helping application
developers to create standard-compliant programs. Section 3
introduces an approach that uses a database with information
about standard elements to generate a desired environment in
a semi-automatic way and allows to keep the environment
in sync with the specification text and other relative tools.
Section 4 describes the application of the approach to the LSB
Development Environment creation process. Finally, Section 5
summarizes the main ideas.

II. EXISTING APPROACHES

One of the most popular approaches to check that the
software product is compliant with some standard is to run
appropriate tests (certification tests, if possible) against the
final product. For example, if application developers target
the Linux Standard Base specification, they can integrate the
Linux Application Checker tool [5] to the testing process.
When targeting Solaris OS, developers can use the appcert
[6] tool to check if their binary files satisfy the rules defined
in the Solaris ABI (e.g. don’t use private symbols or don’t link
Solaris libraries statically).

Both advantages and disadvantages of this approach come
from the fact that it doesn’t affect the development process
itself. The main advantage for the developers is that they
should not make any modifications to their usual process; they
should just add an additional test suite to be executed as a part
of the product tests. Surely, this will increase the execution
time of the tests, but this is usually not a great issue,

A real disadvantage of the approach is that it only allows
to give a verdict on whether the product meets standard
requirements. If the tests pass, then everything is alright; but
in case of failures, the tests can only postulate the fact that a
failure occurred, usually with description of the inconsistency
found. It is application developer who should find the reason
of the failure in the source code (or build environment) and fix
it. Sometimes this may require just a little code modification,
but in some cases this may lead to redesign of the product
architecture. If no special actions to satisfy the standard were
taken before the test execution, then nobody can predict how
compliant the result product is and how much efforts will it
take to make it fully compliant.

Any preliminary actions taken to make the product more
compliant with the standard potentially make this product
closer to the specification requirements, thus decreasing the
probability of discovering serious inconsistencies when ex-
ecuting the tests. The most evident action is to consult the
standard for every interface used by the program to check if it
is allowed, which restrictions are put over it, which alternatives
can be used, etc. This is probably reasonable in case when
developers and architectures are familiar with the standard
and can give the answer instantly, without actual addressing
of the specification text. Thus, a certain level of expertise is

required. Surely, the experience can be obtained through the
practice, but for many standards (and for many developers)
such straightforward practice as careful investigation of the
specification text can significantly delay the release of the
product.

A more complicated approach is to provide developers
with a special environment that will simplify the process
of achieving a standard-compliant product by discovering
the inconsistencies as early as possible. For example, the
environment can be constructed in such a manner that no
program can be built inside it until all standard requirements
are met.

The practice of providing such an environment is rather
widespread in those areas where direct programming in the
target system (where the application should be executed) is
difficult – the system can be expensive and difficult of access
for developers (e.g. operating systems on mainframes) or
have limited resources making it impossible to run such tools
as debugger or profiler (e.g. operating systems on mobile
devices). In most of such cases, the ideal implementation (that
is a system that provides those and only those interfaces that
can be used by applications) does exist, but is hard to access.
The common solution for this problem is to emulate the target
environment on some other system which is more accessible
for developers. In order to achieve this, one can either to
use a hardware emulator to execute an existing system inside
it, or recompile the system for another platform. The former
case usually doesn’t require any modifications of the system
itself, but requires an appropriate hardware emulator. On the
opposite, the latter one doesn’t require any additional tools but
its availability depends on adaptability of the system source
code.

An example of the first approach is a QEMU-based Android
Emulator [7] that provides a virtual ARM mobile device with
a full Android system stack running on it. Android Emulator
is an essential part of the Android SDK, which also includes
a set of tools to interact with the emulator. An example of the
second approach is the LSB Sample Implementation (SI) – a
Linux distribution build on the basis of Linux From Scratch
(LFS) [8] (until version 4.0) or rPath [9] (since 4.0). Both LFS
and rPath allow to obtain a system meeting given requirements.
However, none of these technologies is flexible enough to
create a system with any given set of functions (moreover,
it’s not only tools fault – Linux components are sometimes
interconnected very closely, and it can be impossible to cut one
component without affecting the others). This fact complicates
the development process of the LSB SI itself and it is actually
not guaranteed that the result system provides no forbidden
interfaces.

Another possible way of emulating a desired environment
is to provide some mechanism for one of the existing systems
to behave exactly as the desired one. Such approach can be
used even if the desired environment doesn’t exist in a pure
form (i.e. if there is no real system that provides only allowed
interfaces). However, required modifications of the system
can be significant, and in case of complex systems it can be

rather difficult to maintain these changes in parallel to the
development of the main system. So this way is acceptable
when implemented and maintained by developers of the main
system, and when required possibility is an integral part of
that system. As an example of this approach, we can mention
C and C++ compilers from the GNU Compiler Collection
that support ’-std’ option that can be used to determine the
language standard to be followed by compiler (such as ISO
C90 or ISO C++98).

The approaches mentioned above concern modifications
and adaptation of rather complex software systems, such
as operating system or compiler. Development of required
modifications is usually a separate project, whose complexity
depends on different conditions, such as size of required
modifications, source code adaptability and so on. Sometimes
the required efforts are minimalistic, sometimes they are not.
In any case, at the current state of art a specific approach
is used for every particular project of such kind, but almost
all these projects imply manual examination of the system,
detection of pieces that are not compatible with the given
requirements and investigation of possible fixes for these
pieces. Thus, such approaches are reasonable only if there is
already a system that is rather close to the desired one.

However, in many cases there is no need to modify the
whole huge software product (e.g. operating system). Instead,
it is enough to provide alternative implementation for some
of its parts. Note that there is a significant difference between
providing an alternative implementation that coexists with the
default one (or replaces the default one) and providing the
whole system where the desired implementation is the only
available one. The latter case requires a separate machine for
the system to be executed (either a physical or virtual). In the
former case, developers can use their usual systems in their
usual work and use alternative environment during application
development. In particular, this allows developers to use their
habitual IDE, debugger and other tools that are hardly provided
by the modified environment.

This way is actually the only reasonable approach for
those standards that specify only a small part of the system
interfaces. For example, the SGI’s sample implementation of
the OpenGL API [3] presents several hundreds of OpenGL
functions. The main purpose of the OpenGL Sample Imple-
mentation is to give a standard base for other vendors of
OpenGL implementations (in the first place, developers of
implementations that use hardware acceleration), but it can be
also used by application developers (since 1999, the Sample
Implementation is an open source product) to ensure that they
don’t use any non-standard GL functions. However, it makes
no sense to provide a separate operating system with this
implementation, since such a system would have a very small
difference with respect to any existing one. Moreover, such a
system would not be very convenient for everyday usage, since
the OpenGL SI doesn’t include any hardware drivers and thus
lacks for performance.

A similar way is followed by the LSB Development En-

vironment, also known as the LSB Software Development
Kit (LSB SDK), which is discussed in details in the Section
4. This product is designed for application developers and
only provides headers, compiler wrapper and stub files for
libraries to be used during the build process. The SDK can be
used only to compile applications, but not to execute or test
them. However, this is enough to guarantee that the application
doesn’t use non-LSB interfaces (except the cases when indirect
calls such as one using the dlopen function are used). LSB
SDK proved to be much more easier to be maintained than the
LSB Sample Implementation, and on the opposite of the latter
it guarantees that its header files and libraries don’t provide
forbidden interfaces. But since the SDK cannot be used to test
applications, it is actually the chain of the SDK and SI that
should be used in the development process.

This example is similar to the usage of cross-compilation
to create executables for the hardware architectures that differ
from the current one – in that case one needs a compiler
that supports cross-compilation for the target platform, with
appropriate header files and shared libraries. The whole op-
eration system is not required for compilation, though some
additional runtime environment is required to execute and test
the application.

But even providing of only a subset of the complex system
may require significant efforts on synchronizing the envi-
ronment with the underlying software standard, especially
if the standard evolves quickly. A promising approach of
facilitating this task was introduced by the original creators of
the LSB specification and its accompanying tools, including
the LSB SDK – it was suggested to store those properties
of the standardized items that are used by the tools in a
central database and generate appropriate parts of the tools
automatically using this database. Initially the LSB database
contained names of standardized interfaces, their signatures
and all types required to make these signatures complete.
At the very beginning, the database was populated with data
manually, but as LSB evolved, some tools were introduced to
automate this process.

The rest of this paper summarizes and generalizes the
approach used by the LSB team, giving general advises on
how to automate the process of environment generation using
the database, as well as appropriate data collection and manip-
ulation processes. In addition, some further developments of
this approach are given, including support of several versions
of the standard by the same set of tools. In the Section 4, we’ll
return to the LSB SDK and describe its current state, with all
improvements made by the authors.

III. DATABASE-DRIVEN ENVIRONMENT GENERATION

The approach under discussion suggests to pick out those
parts of the tools to be created that are either specified by the
standard or influenced by the standardized items. Information
about such elements should be separated from data about other
parts of the tools, that are not concerned by the standard
in any way. That is, one should create a template of every
tool – some kind of skeleton that just misses those parts that

concern standardized items. These “holes” should be filled by
additional generator on the basis of some external storage. In
this paper, we consider a database to be such a storage, though
the main ideas can be applied to any storage kind.

A. Database Design

First of all, one have to detect what should be stored in the
database and design appropriate database schema. For every
tool to be generated using the database, the following analysis
should be performed:

• Determine entities involved in the tool that are defined in
the standard.

• Determine entities that are influenced by the standardized
items. This step is recursive – one should also determine
entities influenced by those that are influenced by the
standardize items, and so on, until a closed set is obtained.

• Determine which properties of entities picked out during
the first two steps are necessary for the tool.

On the third step, it might be necessary to determine all
properties required for the tool, even those that are not con-
cerned by the standard. A clear rule can be used to determine
if one should store all properties of some item in the database
or only those that are concerned by the standard; to formulate
this rule, we should first give a definition of one important
term:

Imitating the relational data model, let’s say that a set of
properties of an item forms its primary key, if in the real world
(or in some restricted environment where we operate) this item
can be unambiguously identified by this set of properties.

For example, a binary interface exported by a library written
in C language is unambiguously defined inside the library by
the name of appropriate source-level item (either function or
global variable). That’s why name of the binary symbol of C
library is equal to the name of appropriate source item (to be
honest, with a small reservation for symbol versions). For C++
language, source-level name is not enough – one should add
names of all namespaces and classes to which the item belongs
(since functions with the same name can exist in different
classes), as well as list of parameters (since every function
can be overloaded, i.e. one class can provide several functions
with the same name, but with different parameters). That’s why
names of C++ binary symbols are constructed in a special way
(by means of the process known as mangling) to reflect all
these traits. In any case, if we consider the whole system, we
should add name of the library to the primary key of every
interface to unambiguously identify it; if we admit that the
system can provide several libraries with the same name in
different locations, then we should also add a library location,
and so on.

By means of the primary key definition, we suggest to use
the following rule to identify the properties that should be
stored in the database:

Advice 1. If it is detected that at least part of the primary
key of some item should be stored in the database, then all

properties of this item (including those that form the primary
key) should be stored there. Otherwise, it is enough to store
only those properties that depend on the standard.

This rule is based on the fact that if we can get the primary
key of some item without consulting the standard, then we
can unambiguously detect the place of this item in the code
of the tool to be generated. So we can simply put the item to
the appropriate place in the tool template, leaving holes for
secondary properties affected by the standard (if any). Since
the location of item can be calculated, then it will cause no
problems to create a generator that will detect the holes and
populate them with data.

In other case, we can’t detect the actual place for the
item in the code of the tool. Thus, we have to store all
information about this item in some external storage and pick
it up when necessary. Moreover, since we don’t know the
standardized primary key of the item, we can’t exactly identify
the item, and in general we should store information for all
primary keys that are acceptable by the standard requirements.
Fortunately, in many particular cases these possible primary
keys are restricted to a very limited set. For example, as
we saw above, in case of functions exported by libraries
written in C language, a function name (maybe together with
a library name) is enough – that is, there is no need to create
several entries in the database for the same function, since
all its attributes (parameters, return value) are unambiguously
identified by the name.

One may notice that the database itself needs some primary
key to store secondary properties of every item. This primary
key can be exactly the same as the one of the item, or
some artificial key that allows to calculate the ’real’ one (for
example, a result of some hash function can be used to achieve
a numerical artificial key to decrease the size of the database
and to speed up the database queries). So the gain of not
storing some properties in the database actually concerns only
those properties that are not included in the primary key and
don’t depend on the standard. In every particular case, this
gain can be estimated; if it doesn’t prove to be significant
it may make sense to store all properties of the item in the
database.

Thus, if we are not sure if some item is obligatory for the
tool and will appear there regardless of other conditions, then
we should store all properties of this item in the database. But
how generator will know if a given database entry should be
picked up during generation? The simplest way is to assign a
boolean flag to every database record:

Advice 2. If all properties (including the primary key) of
some kind of items are stored in the database, then additional
boolean flag should be attached to every entry corresponding
to this kind of items to indicate if a particular entry should
be picked up by the generator when creating the tool.

Let’s call this flag as appearance flag. With such a flag,
generators should only select those entries for which the flag
is set.

B. Handling Item Interdependencies

The most straightforward way to set the appearance flags
is to set them manually. However, in some cases this can be
a rather complicated task – the thing is that different items
can depend on each other, and such interdependencies should
be taken into account. For example, if we want to declare
some function in a header file, we should also declare all
types necessary for its declaration (that is, for parameters and
return value) or to include other header files that will provide
necessary declarations. The required types can have complex
structure and require other types to be declared, and so on.
Resolving such dependencies manually is tiresome; however,
usually these dependencies can be clearly formulated, and it
makes sense to automate the resolving process.

In order to do this, we suggest to create a markup tool, that
will check and resolve dependencies between different items.
In general, such a tool should be provided with a basis – a
set of items that should be included in the generated code.
This set should be formed manually and should contain all
items that are included in the specification. On the basis of
this information, the markup tool will decide which additional
items should be included to the generated code to make it
complete.

For example, let’s suppose that the specification defines a
set of C functions with signatures, and in the database we store
function names, as well as type names, and mapping between
function parameters and types, as well as mapping between
return values and types. In order to generate fully qualified
declaration, developers may only mark necessary functions as
included, and the types that should be marked as included will
be calculated automatically by the markup tool.

In this example we suppose that types are subordinate
objects – if a type is required for some functions, then it is
included without any discussion. However, another situation is
possible, when the items in question are equal in rights – that
is, it is not clear, if we should include a type or exclude all
interfaces that use it. In case of such situations, the markup
tool can only report the problem, but not solve it.

From the generator architecture point of view, there are at
least two ways of implementing markup functionality:

• Implement a separate tool that will set flags directly in
the database.

• Implement necessary functionality in generators; in this
case all dependencies are resolved during generation, and
database modifications are not required.

It’s hard to say if one of these approaches is better than
the other. The disadvantage of the second approach is that it
makes the generation logic more complicated, and can slow
down the generation process. On the other side, the first
approach implies that the markup tool should be executed after
any database change that can affect the generated code. For
confidence, one can execute this tool every time the generation
is launched, so the actual time of generation will also increase.
The first approach is more preferable in case when the markup
tool cannot resolve dependencies by itself and should interact

with the user.
One more important question is how to store information

about dependencies (that is, how the markup tool should
know that one item depends on another). The straightforward
way is to hardcode all the dependencies in the markup tool.
However, there is a more elegant solution – if the used DBMS
supports foreign keys, then it is enough to set such keys for the
necessary tables, and the markup tool will be able to use them
to detect dependencies. Considering again the example with
C functions, one may store functions and their return values
in the following way:

• Function names are stored in the Function table.
• Type names are stored in the Type table; let’s suppose

that this table has a primary key Tid.
• The Function table should also have RetValue field to

store the type of its return value. This field should be
a foreign key referencing appropriate Type record by its
primary key Tid.

In general, we believe that this way is much more flexible
than the hardcoded dependencies in the tools. So, one more
rule:

Advice 3. Interdependencies between different items should
be implemented as foreign keys of appropriate tables in the
database.

C. Populating Database With Data

To design the database schema and to create generators is
only a half of the problem. The database is useless until it is
populated with data. We have already considered one aspect of
the data management by suggesting a tool that will take care
of item interdependencies, but this is just an auxiliary tool,
a kind of consistency checker, though its usage can save a
lot of time. However, the main problem is to collect the ’raw’
data – that is, particular interfaces of different kinds with their
properties and accompanying items. There can be no general
method of solving such a problem, since in different cases
the data can have different sources. For example, the whole
set of standardized interfaces can be created from scratch
by standard developers (e.g. as a result of some scientific
research). In this case it is likely that there is no other
way of populating database with data except typing the data
manually. Some kinds of automation can be available in any
case – for example, transforming textual lists of interfaces
into SQL statements; however, these textual lists should be
also achieved somehow. But here we’d like to point out one
important situation when the significant part of necessary data
can be obtained automatically. We are talking about the case
when the standard is not created from scratch, but is based
on some existing system, or generalizes interfaces of several
implementations.

Advice 4. In order to populate the database with data, it
is useful to create a set of tools that will allow automated
extraction of necessary information from existing systems.

We suggest to extract as much data as possible from
existing systems. We believe that there is no need to apply
complicated filters to the collected data in order to select only
those that have some chances to be useful for the standard.
It is much more easier to set/unset the appearance flag for
lots of entries than to collect additional data in case if one
finds that we haven’t collected enough. With the modern
database management systems, it is unlikely that specification
developers will reach some database limitations on the data
size or performance – yes, the modern standards are large,
and if we collect and store all the data that can be useful
for the developers, we can achieve large amounts of data. For
example, the LSB, one of the biggest interface standards in
the world, contains about 40,000 interfaces. A usual Linux
distribution consisting of one DVD disc can contain up to
million interfaces, and theoretically, all these interfaces can
be useful for the LSB. However, even these numbers are not a
problem for the modern DBMS (in particular, for MySQL,
used as the DBMS for the LSB Database which currently
contains about 100 millions of records).

The task of data collection is a separate problem and can
be even more complicated than generator development. As
LSB developers’ experience shows, it is much more simple to
generate headers with declarations of functions and types on
the basis of structured database information, then to parse and
analyze existing headers in order to populate the database with
this structured data. However, even this task doesn’t seem to
be very time-consuming when compared to the task of manual
collection of data for 40,000 functions and similar quantity of
types, constants and macros necessary for their declaration and
usage.

Even more gain can be achieved if there are several tools
that are generated (at least partially) using the database.
Though these tools can require different generators to be
created, it is likely that they use similar information from the
database. If so, the same tool can be used to populate the
database with data satisfying all generators.

D. Supporting Multiple Versions of the Standard

In the “Database Design” section, we’ve suggested to use an
appearance flag to indicate that a particular item is included
in the standard. To be sure, a single flag allows to store
information corresponding to a single specification version.
However, as we have noticed in the beginning, sometimes
it is necessary to support several versions simultaneously.
Forking a separate copy of the database for every version
is a possible approach, but it introduces great data overhead
(especially in case when different versions have significant
intersection), complicates back porting of fixes for different
issues and can significantly increase the maintenance cost of
the whole system.

Another possible approach is to use the same database to
store information about all specification versions. In this case
the same tools can be used to generate data corresponding
to a given version (moreover, it is possible to generate a
single tool whose behavior can be adjusted by user to correlate

with a particular specification version). Detailed description of
possible approaches of improving the database to store such
data can be found in [10]. Here we’ll just summarize the main
statements of that work:

Advice 5. In order to store temporal data, one should
replace the ’appearance’ flag with the time interval that will
indicate a set of versions where the item was included in the
standard.

This statement actually suggests to add a temporal dimen-
sion to the database. This can be done by using either temporal
DBMS, or relational DBMS with additional fields indicating
the interval bounds. With respect to specification versions, we
may notice the following important features:

• The time is discrete; the possible values of interval
bounds are standard versions, broadened with at least one
specific value, that can be referenced as ’infinity’. If this
value is used as a lower bound of the time interval, then
this means that the entry has never been included in the
standard. If it is used as an upper bound and the lower
bound is not infinity, then the entry is included in all
versions of the standard starting with those pointed by
the lower bound of the time interval.

• When storing specification versions, one have to deal
with only one kind of temporal data, called valid time,
and don’t need to store transaction time. That is, we
should know in which version of the standard some item
appeared, but not the time when the appropriate change
was made in the database.

Thus, there is no need to track transaction time, and the set
of possible values for the valid time is usually limited to a
rather small set of values (fortunately, the standards doesn’t
introduce a new version every day). Moreover, a common
life cycle of an item in the standard looks like “appeared
in version A, withdrawn in version B”. In general, situations
when some item is returned back after been withdrawn are
quite rare. So for most cases the database will contain only one
time interval indicated by two bounds – that is, if compared
to a single appearance field, we just obtain one more field for
every record. Thus, this approach is much more efficient from
the data size point of view than a set of separate copies of the
database corresponding to particular standard versions.

IV. DEVELOPING THE LSB DEVELOPMENT
ENVIRONMENT

Let’s now return to the LSB Development Environment
and show how the ideas discussed above are used during its
creation.

First, let’s note that the main purpose of the Linux Standard
Base specification is to pick out those interfaces provided by
the operation system that are common to all major Linux
distributions. The following kinds of interfaces are taken into
account:

• Binary libraries (their runtime names).
• Binary interfaces (functions and global variables) pro-

vided by libraries.

• Commands (utilities and shell builtins).
• Modules of interpreted languages.
• Kinds of sections for the ELF files.
• RPM format tags.
That is, the LSB specifies the runtime environment where

the application is running, and concerns the problem of dis-
tributing the applications in a compiled form. Applications that
use only interfaces included in the LSB can be executed on any
LSB compliant system without recompilation or environment
adjustments.

LSB 4.0 contains specifications for 57 libraries with about
40,000 binary interfaces. These numbers might look large, but
not when compared to any desktop Linux distribution – usual
system on one DVD disk ships several thousands of libraries
and up to million of interfaces. So it’s not easy for application
developers to orientate themselves in the Linux and LSB
world. The developers who want to target LSB are supported
with the LSB Navigator – web system that represents the LSB
online, with lots of additional helpful information not included
in the standard itself – and Linux Application Checker that can
be used to check LSB compliance of executable files, shared
objects and scripts that form the application.

However, these two tools are not free from the issues
discussed in the beginning of this paper – consulting Navigator
for every interface requires a lot of time; Application Checker
can be integrated in the build process, but this will increase
the build time, and in many cases the checker will just report
the failure, but provide no suggestions on how to fix it.
Application developers can meet some issues with obtaining
LSB-compliant product when building their programs in the
real systems, even if they don’t directly use non-standard
interfaces. For example, the following two problems arise quite
often:

• LSB doesn’t include arithmetic routines of the libgcc s
library. However, the gcc compiler forces usage of these
routines if they are provided by the libgcc s library that
participates in the build process.

• Default behavior of the gcc compiler on some systems
leads to the usage of ELF sections that are supported
only by the last generation of distributions and thus
not portable and not yet included to LSB. For example,
Avinesh Kumar in his blog [11] explains why binaries
compiled on RHEL 5 with the default compiler options
will fail to run on RHEL 4.

Without a good knowledge of compiler operational princi-
ples, it’s not easy to find out the roots of such issues.

To save application developers from these problems, it was
decided to support them with the specific build environment,
whose usage in the build process will guarantee that the
obtained executables are compliant with LSB. At the moment
two projects exist that provide such possibility:

• LSB Sample Implementation – the whole distribution
built using the rPath technology that tries to limit pro-
vided interfaces to LSB ones.

• LSB Software Development Kit – a set of tools that can

be installed in any real system and used as alternatives
to the system build toolchain.

LSB Sample Implementation (LSB SI) is useful not only
for building applications, but also for testing them, since it is
guaranteed that implementations of its interfaces are compliant
with LSB. However, since LSB SI is a distribution, it requires a
separate machine to run; though it can be also used as a chroot
environment, but even this variant is not very convenient for
many developers. Another problem was already mentioned
in the Section 2 – the development process of the SI is
rather complicated and it is not guaranteed that it provides
no forbidden interfaces at all.

On the opposite, LSB SDK doesn’t suffer from these issues.
To understand the reason, let’s first consider the structure of
this environment. It consists of the three major components:

• Stubs for libraries specified by LSB. These stubs export
only those symbols that are included in the standard, but
they don’t provide their implementation.

• Header files that provide API (function declarations,
types, constants, etc.) for the LSB libraries. It is guar-
anteed that usage of this API cannot lead to incompliant
application.

• Compiler wrapper – a tool that should be called instead
of system compiler. This tool calls the system compiler
itself, forcing it to use libraries and header files provided
by the LSB SDK. The environment variables and com-
piler options are automatically set to eliminate possibility
of obtaining incompliant applications.

The advantage of the LSB development process, from
our approach point of view, is the existence of specification
database that stores different information about elements
included in the specification. In particular, the database stores
names of included libraries, as well as names and signatures
of included interfaces. This database is used to generate LSB
specification text and some primitive tests, and also serves
as a knowledge base for LSB Navigator and Linux Applica-
tion Checker. The data collection process that populates the
database with information is separated from all other tasks
and can be modified without affecting any other items of the
LSB infrastructure. Thus, no wonder that the idea raised to
use the database to automate the process of the LSB SDK
development by introducing an automatic generation of some
parts of the SDK, especially stub libraries and header files,
that hardly depend on the entities included in the standard.

Stub library generation process has been implemented in a
rather straightforward way. In order to obtain a desired stub,
a source file in C language is generated with declarations of
functions whose names are the names of binary symbols to be
exported. Return types and parameters don’t matter anything
– we may use void as a return type for all functions and
totally omit parameters. After this file is compiled, we’ll obtain
a shared library that exports exactly those symbols that are
required by LSB.

This approach uses the fact that for libraries written in C,
names of exported binary symbols (that are taken into account

by the dynamic linker) are equal to the names of functions and
global variables implemented in the source files; return types
and parameters are not taken into account. For C++ and other
languages that allow users to override functions, the situation
is different – names of binary symbols are constructed during
the mangling process on the basis of the function name itself,
its parameters and name of the class or namespace which it
belongs to. However, if we know binary symbol name of a C++
function, we may create a C source file with declaration of a
function with this binary name and compile it. The result will
be the same as if we create a C++ source file and place a proper
function declaration there (i.e. with all necessary classes and
parameters).

Thus, all that we should know to generate stub libraries are
binary names of symbols that should be exported by them.
The database fairly provides us with this information. Since
the generated source files don’t contain any actual code, then
there are no interdependencies among functions that should be
taken into account.

Unlike library stubs, header files should provide complete
declarations of functions. All non-intrinsic types used in these
declarations should also been declared. In addition, it is useful
to declare such elements as constants and macros. Though are
they are out of LSB scope, they can be useful for developers
(but one should ensure that the macros don’t invoke forbidden
interfaces). Thus, though we still don’t need function imple-
mentations, we have to declare complex types that sometimes
have rather tricky interconnections, so generation of correct
header files is a more complicated task then generation of
library stubs. In case of C++, we also have to deal with
templates that can affect runtime dependencies of applications.
Every template should be analyzed to decide whether its usage
can lead to calls to forbidden functions. This task was found
to be rather complicated, and it is not completely solved at
the moment, i.e. it is not guaranteed that C++ header files
shipped with the LSB SDK cannot lead to usage of non-LSB
functions. However, even if the latter happens and application
obtains a dependency on a forbidden interface, this will be
caught at the linking stage which will fail, since stub libraries
don’t provide the forbidden interfaces.

In the very beginning, the LSB database was populated
manually; at that time, no one thought about SDK generation,
and for the specification and test generation purposes the data
was complete enough. As LSB evolved, the size of necessary
data became too large to be handled manually, and additional
tools were developed to automate data collection process
(import* scripts, libtodb tool [12]). These tools were mainly
based on the analysis of binary library files with debugging
information, with slight header files analysis. However, though
debugging information from binary files could give enough
data to generate specification text and some tests, a lot of
manual adjustments were required to make generation of
header files possible. To improve data collection process, a
new set of tools called LibToDB2 were developed at ISP RAS
under the contract with the Linux Foundation [13]. The new

tools analyze both binary files and headers, extracting data
more accurately then their predecessors. The tools collect and
upload to the database all information about analyzed headers
and libraries. Then on the basis of lists of functions and
global variables included in LSB, a separate tool discovers
the types that should be present in header files to declare
included interfaces. Surely, LSB workgroup can point out that
some additional types are useful for developers and should be
included in headers; these types should be marked as included
manually. The same situation is with macros and constants,
that are mainly selected manually, though there is a tool to
check that included macros don’t require non-LSB interfaces.

One more challenge was to make the LSB SDK to be a
multiversion tool, that is, able to generate code complaint with
any given LSB version. The LSB database contains data about
all released versions of LSB (as well as about the one under
development), so it can give us all necessary information about
LSB history [10]. Thus, the task was to generate headers and
stub libraries that could be used to target any LSB version.
Depending on some environment conditions, the SDK should
behave as if it represents a particular LSB version. The actual
tool that user deals with is a compiler wrapper; to target a
particular LSB version, user should only specify an option for
it or to set appropriate environment variable, and the wrapper
should perform all other necessary actions.

Since the set of symbols exported by a particular library
cannot be affected by its environment, we can’t generate a
single stub file for every library to target several LSB versions.
Instead, we create a separate file for every LSB version where
the library appears, and let the compiler wrapper to choose the
file to link against at runtime, on the basis of its options and
environment variables. Unlike binary libraries, the contents
exported by header files can be manipulated using different
preprocessor directives. In the LSB SDK, every declaration
is embraced with conditions on the LSB VERSION constant,
which can be set either directly by user or by the compiler
wrapper. This results in smaller total size of files with respect
to the case when a separate header is generated for every
version, since we can create only one declaration of element
to target several versions, and most elements are present in
more than one version of LSB.

To estimate the gain achieved by usage of generators instead
of manual creation of the whole SDK, one can compare the
sizes of generated files with sizes of those part of the SDK
that are written manually and with the size of generators
themselves. Table I contains characteristics of the generated
C-language part of the SDK (as was mentioned above, for C++
elements only stub libraries are generated at the moment, and
generators of header files are under development).

Table II contains the same characteristics of the generators
and data collection tools, which are written in Perl.

Table III contains the characteristics of the LibToDB2 set of
tools (those part that collect C-language data), which is also
important for the SDK generation. Note, however, that the data
collected by these tools is used by many generators, not only
by the SDK ones.

TABLE I
LSB SDK GENERATED CODE CHARACTERISTICS

Stub libraries Headers

Source code size, loc 87,800 68,500

Development effort estimate,
person-years 22 17

Total estimated cost to
develop, dollars 2,950,000 2,300,000

TABLE II
LSB SDK GENERATORS CODE CHARACTERISTICS

Stub libraries Headers

Source code size, loc 400 2,100

Development effort estimate,
person-years 0,07 (1 month) 0,5 (6 months)

Total estimated cost to
develop, dollars 10,000 60,000

TABLE III
LIBTODB2 CODE CHARACTERISTICS

Source code size, loc 4,400

Development effort estimate, person-years 1

Total estimated cost to develop, dollars 126,000

The data is generated using David A. Wheeler’s ’SLOC-
Count’ [14] tool. Estimates are given by this tool using
the basic COCOMO model. Surely, the estimates suppose
that the code is created from scratch and don’t take into
account the nature of the code (such as absence of function
implementations in stub libraries). One may also note that the
SDK code can be created on the basis of appropriate upstream
code by dropping those parts that are incompliant with LSB.
However, such an analysis is rather difficult, and in any case
it’s not simple to support more than hundred of thousands of
lines of code manually.

Schema of the database tables that are used during the LSB
SDK generation is shown at Fig.1. Temporal data is stored in
the tables that implement many-to-many relationships between
entities and hardware architectures, since appearance of an
entity on some architecture is independent from its presence
on other platforms, as described in [10]. The only exception
is header files – if a header is included on one platform, it
is automatically treated as included on all others (even if it
is empty there). So there is no direct relationship between
headers and architectures, and temporal data is stored in the
Header table itself.

Starting with LSB 4.0, the LSB SDK can be used to create
executables and shared libraries compliant with any given
LSB version, greater or equal to 3.0 (earlier versions are not
supported by the database, since there was no great demand
for them). At the moment, the SDK allows to generate only
files fully compliant with LSB, with no exceptions (that is,
one cannot use libraries or functions that are not included in
LSB). In future it is planned to implement a relax mode for the

Fig. 1. Main Tables of the LSB Database Used During LSB SDK Generation

SDK that will allow applications to use certain symbols not
included in LSB, but still known to be stable and present on
most systems. Such possibility should increase the portability
of applications (though formally the programs compiled in the
relax mode will not be compliant with LSB). But even at the
current state of art the SDK is very useful, and is used to build
all programs involved in the LSB infrastructure (including
test suites, LSB Application Battery and the SDK itself).
Another good example of the SDK usage is the OpenPrinting
project that suggest to write all printer drivers using the
LSB DDK (Driver Development Kit) which is actually an
enhanced version of the LSB SDK (supplemented by tools and
libraries necessary for driver development but not included in
LSB – such as Ghostscript or CUPS DDK) [15]. All current
distribution-independent driver packages in the OpenPrinting
database are based on LSB 3.2.

V. CONCLUSION

When creating a portable application, developers are inter-
ested in using only those interfaces that are present on the
most of the target systems. One of the way of achieving this
is to use interface standards that are followed by the target
systems. However, direct consulting with the standard text
is not very efficient, and consulting appropriate specialists
can be expensive; in both cases, the development period can
increase significantly. That’s why it is important to support
developers with toolchains whose usage will guarantee that
the final product is compliant with the standard. However,
integration of new tools can be also expensive and requires
some time. So it is important to provide software developers
with the tools similar to those that are already used in their
development process, to make it cheap to replace existing tools
with the new ones (or use the two toolchains in parallel). One
of the possible ways of creating such tools is to modify the
existing ones.

Existing Implementation

Database

 Data Collection Tool

 Generator

Adopted Implementation

 Standard

Workgroup

Fig. 2. Developing Adopted Tool Using Existing Implementation

This paper discusses an approach that allows to automate
development and support of the tools based on the existing
implementations. Fig.2 illustrates the suggested organization
of the development process. The main idea is to collect data
about existing implementation and to put it to the database in
some intermediate format convenient for the specification de-
velopers. The data can be manipulated by developers in many
ways; in particular, they can use special markers to separate
those data that should appear in the tool from undesired or
useless information. The automatic generators will use the
adjusted data to create the tool itself; the tool achieved is
actually a modification of existing implementation, adopted
for the specification requirements.

Usage of the database allows specification developers to
deal only with those properties of the tool that are concerned
by the standard. All other aspects necessary for achieving a
working program are handled by automatic generators that
also propagate every change made in the database to all
places where it should take effect. Thus, the specification
developers can even have slight knowledge about the generated
tool structure – they just should point out which interfaces
are allowed, and which are not. Surely, complex interface
standards require creation of complex developer-oriented tools,
and the more complicated is a tool, the more complicated are
appropriate generators and data collection tools. Nevertheless,
development of complicated generators can be much more
cheaper than development of the tools from scratch. And
even more gain can be achieved if the same database is
used to support several versions of tools corresponding to
different versions of standards. Adding temporal dimension to
the database and support of this dimension by the generators is
not as expensive as support of several distinct tools or several
distinct databases.

The approach suggested in this paper is used to develop

the LSB SDK and proved to be useful and efficient, saving
lots of efforts and resources. Since the SDK functions in a
similar way as the system compiler toolchain does, its usage
is transparent for developers and it is now adopted by many
people who care about building software products portable
among different Linux distributions in the form of binary files.

REFERENCES

[1] Linux Standard Base. http://www.linuxfoundation.org/en/LSB
[2] Building Applications with the Linux Standard Base: Using the LSB Sam-

ple Implementation. http://www.linuxfoundation.org/en/Book/HowToSI
[3] SGI’s Sample Implementation of the OpenGL API. http://oss.sgi.com/

projects/ogl-sample/
[4] Building Applications with the Linux Standard Base: Using the

LSB Development Environment. http://www.linuxfoundation.org/en/
Book/HowToDevel

[5] All About the Linux Application Checker. http://ldn.linuxfoundation.org/
lsb/all-about-linux-application-checker

[6] Becky S. Chu. appcert: A Static Application Checking Tool.Sun De-
veloper Network, June 2001. http://developers.sun.com/solaris/articles/
appcert.html

[7] Android Emulator. http://code.google.com/android/reference/emulator.
html

[8] Linux From Scratch. http://www.linuxfromscratch.org/
[9] rPath. http://www.rpath.com
[10] Denis Silakov. Tracking Specification Requirements Evolution: Database

Approach. Proceedings of the First Spring Young Researchers’ Collo-
quium on Software Engineering (SYRCoSE’2007), Volume 2, pp. 15-22.
May 31 - June 1, 2007. - Moscow, Russia.

[11] Avinesh Kumar. Binary incompatibility between
RHEL4 and RHEL5. http://avinesh.googlepages.com/
binaryincompatibilitybetweenrhel4andrhel

[12] LSB DB Tools. http://ispras.linuxfoundation.org/index.php/LSB DB
Tools

[13] LSB Library Import Tools. http://ispras.linuxfoundation.org/index.php/
LSB Library Import Tools

[14] SLOCCount Tool. http://www.dwheeler.com/sloccount/
[15] OpenPrinting: Writing And Packaging Printer

Drivers. http://www.linuxfoundation.org/en/OpenPrinting/
WritingAndPackagingPrinterDrivers

